prices may rise and would like to hedge his risk to wheat prices increasing.' This would lead to admiring looks from the Chinese delegation. My description of options was similar. 'What is the problem with selling forward?' I would ask. 'The farmer is protected from losses. But he gives up the opportunity to benefit from higher wheat prices. This is where options come in. What the farmer in effect needs is *insurance* against wheat prices falling. He could buy a put option. If prices fall below an agreed level (known as the strike price) then the seller of the option pays the farmer the difference between the low actual market price and the agreed higher strike price. The farmer gets the best of both possible worlds. If prices fall then the farmer is protected. If prices rise then the farmer benefits from the higher price. It is price insurance. The farmer pays a fee (known as the option premium) for this insurance.' Most corporate treasurers and fund managers would be frowning about the cost of this insurance at this point. The Chinese delegation's joy would know no bounds. This was simply amazing! 'The baker is concerned mainly about price rises. If prices fall then he can buy his wheat more cheaply. If he wants protection only against higher prices, then he buys a *call* option. If prices go down then he is free to buy wheat at cheaper prices. In return for getting insurance against higher prices, the baker pays a premium to the seller. And the seller of the option – known as the option writer? Well, he took on the risk of a price change because he is paid a fee to assume the risk. He acts as an insurer. The seller may also have an underlying position that offsets the risk on the option. Traders generally just match buyers and sellers. Also, there are ways of hedging the risk of options.' Yes, that was all there was to derivatives. 'Derivatives' was the generic term for forward and option contracts. They were really quite simple. # Betting shops Derivatives, at least in the form of forwards and options, have existed for a long time. The Chicago Board of Trade (CBOT) has traded futures (basically a forward contract) on many agricultural commodities since the nineteenth century. The major users were really farmers, buyers of commodities and grain traders. For a hundred or so years, derivatives meant forwards/futures and option contracts traded on exchanges such as the CBOT and its arch-rival the Chicago Mercantile Exchange (CME). A futures and option exchange is like a stock exchange. The brokers own the exchanges, customers pay a commission to trade on the exchange, and the exchange also clears trades and acts as a guarantor of the risk of the traders using a system of security deposits (known as initial and variation margining). The first changes came about in the 1970s when futures on financial commodities (such as currencies and interest rates) were introduced. Stock options were listed and traded, but the markets remained small and illiquid. They were the arcane preserve of a small group of specialists. The major breakthrough occurred in the late 1970s – the swap market started. It ushered in the over-the-counter (OTC) market. It was the start of the golden age of derivatives. Swaps are basically forwards. Swaps enable you to exchange one series of future cash flows for a different series of cash flows. For example, you could exchange a series of cash flows that were at a fixed rate for another where the rates were reset periodically (floating rates). This is an interest rate swap. You could exchange a series of cash flows that were in dollars for another series of cash flows in yen (a currency swap). You could even exchange a series of cash flows based on interest rates for a series of cash flows based on equity price changes (an equity swap). The Indonesians had used a version of this simple arrangement. The emergence of swaps was important. Major banks and securities dealers went from being minor players to centre stage. Once they worked out the large sums of money to be made, they became fervent advocates of the OTC derivatives markets. The OTC format allowed a great deal of customization of structures. To this day this remains a key benefit of the OTC market that fans cite unceasingly. There was also the small issue of transparency, mainly its absence in OTC markets. If you traded on exchanges, you were bound by the rules of the exchange. Everybody saw what you were doing. The OTC market was a gray world where dealers dealt with each other or with clients. Information about trades and prices were less easy to come by, which suited the dealers just fine. It allowed them to use the lack of transparency to make money from their clients and each other. The emergence of swaps and the OTC markets changed the dynamics of derivatives forever. The exchanges didn't know it then. Their cozy clubs were about to be relegated to a distant second place in the most profitable business emerging in finance. A gigantic system of betting on changes in prices was just beginning – it was called *financial derivatives*. A gigantic system of betting on changes in prices was just beginning – it was called *financial* derivatives. ## Secret subtexts The known known of derivatives was straightforward. We proselytized with evangelical fervour on the benefits of derivatives for hedging. The poor farmer and the unfortunate multinational mining company subject to wicked and uncontrollable market forces figured prominently in our pitches. Our audiences listened to how derivatives would save them from an awful fate. And the risk of derivatives themselves – the known unknowns, unknown knowns, unknown unknowns? Well, they were generally left for the clients to discover for themselves. The rule was *caveat emptor* – buyer beware. So, what was the great secret? There were a few. Derivatives are typically cash settled. This means that the farmer does not need to deliver the wheat. Instead, at the agreed delivery date a calculation is done. The actual market price of the wheat on that day is compared to the price agreed under the forward contract. If the market price is lower than the agreed forward price then the farmer gets the difference. When the farmer actually sells the wheat he gets a lower price. But the payment under the forward contract (the gain) boosts the farmer's receipts to the locked-in agreed price. If the market price is higher than the agreed forward price then the farmer pays the difference. He makes a loss. The farmer's loss is offset by the gain he makes when selling the wheat normally because the market price has gone up. Either way he ends up getting the agreed price, right? The idea is simple. I generally emphasized the flexibility of cash settlement. The farmer continues to deal with whoever he normally sells grain to. The farmer hedges separately with a third party – us – without disrupting his normal trading relationships. This gives the farmer flexibility in timing when he hedges. It lets him get the best price. It was hero of the socialist revolution stuff. But there was a subtext. # U.S. Benefits from the Columbia River Treaty – Past, Present and Future: A Province of British Columbia Perspective **BC Ministry of Energy and Mines** June 25, 2013 ### TABLE OF CONTENTS | | Page | |---|------------------| | EXECUTIVE SUMMARY | i | | 1. INTRODUCTION | 1 | | 2. THE COLUMBIA RIVER TREATY TODAY | 2 | | 2.1 Current Operations | 2 | | 2.2 A Coordinated System 2.2.1 Flood Control 2.2.2 Power Production 2.2.3 Ecosystem | 4
4
5
6 | | 3. THE COLUMBIA RIVER TREATY POST-2024 | 7 | | 3.1 Climate Change | 8 | | 3.2 Flood Control 3.2.1 Called Upon Flood Control 3.2.2 Coordinated Flood Risk Management | 9
9
11 | | 3.3 Power Production and Reliability | 12 | | 3.4 Ecosystem | 16 | | 3.5 Water Supply | 17 | | 3.6 Navigation | 18 | | 4. BENEFITS OF COORDINATION AND COORDINATED FLOOD CONTROL | 19 | | 4.1 Benefits to the United States | 19 | | 4.2 Benefit to Canada | 20 | | 5. CONCLUSION | 21 | #### **EXECUTIVE SUMMARY** In 1964, Canada and the Unites States (U.S.) ratified the Columbia River Treaty (Treaty). The impetus for the Treaty was the disastrous flood of 1948 which devastated the City of Vanport and cost many lives, along with growing power demand in the Pacific Northwest. In exchange for an equal share of the U.S. downstream power and flood control benefits, Canada agreed to build three dams in British Columbia and allowed one U.S. dam to flood into Canada. The Canadian facilities vastly reduced flood risk in the U.S. while enabling the production of significantly more electricity at U.S. hydropower facilities. The U.S. prepaid Canada \$64 million to rent 8.45 million acre feet of storage space in the new Canadian reservoirs for 60 years to support assured flood control which resulted in reduced flood damage and increased safety for U.S. citizens. At the same time 110,000 hectares (270,000 acres) of Canadian ecosystems were inundated; residents, First Nations, communities and infrastructure were displaced; farms and forestry activities were impacted. The U.S. also committed in the Treaty to paying Canada half of the incremental power potential that could be produced because of the new flow regimes that the Treaty dams made possible. The Treaty has no end date but either country can unilaterally terminate the Treaty from September 2024 onwards provided that at least 10 years notice is given. This ability to terminate the Treaty, and changing flood control provisions whether the Treaty is terminated or not, have prompted both countries to undertake a review of the Treaty to determine its future. The Treaty has worked well in optimizing flood control and power objectives. However, as society's values change, so have the benefits of the Treaty. The coordinated management of river flows and storage reservoirs has
since produced a wide range of additional benefits to interests such as ecosystems, navigation, water supply and recreation. Yet, the existing and future benefits under the Treaty, and the risks and losses that could occur if the Treaty is terminated are not well understood. #### Treaty Benefits in the U.S. Flood Control: Half of the available flood storage in the Columbia basin is located in British Columbia. Since the Treaty storage became operational, there has never been a flood causing major damage along the Columbia River, avoiding \$2 billion in potential damage in one year alone. In 2024, regardless of whether the Treaty continues or is terminated, planned assured flood control operations change to a more ad hoc "called upon" flood control. This means that all U.S. reservoirs that are able to reduce damaging flood flows at The Dalles will need to be drafted deeper than is current practice before Canada can be "called upon" to provide additional assistance. At this time, the Canadian and U.S. Entities disagree on how called upon flood control would be implemented. Regardless of this disagreement, modelling has shown that this will increase the flood risk on the system while altering current reservoir operations and increase the risk of reservoirs not being able to refill, with likely negative consequences for a number of interests, such as fisheries, ecosystems, power production and water supply. British Columbia is open to discussing alternative flood risk management arrangements that would make better use of existing facilities, increasing certainty of operations and avoiding negative impacts to U.S. interests. i ¹ February 2013. Permanent Engineering Board Meeting. <u>Hydro power</u>: The Treaty has significantly enhanced hydropower production in the U.S. and continues to provide predictable and reliable flows that translate into firm energy so that utilities can meet their customer load. During the Treaty review, Bonneville Power Administration's analyses have focused on average energy benefits based on assumed Canadian operations, and presented the information in a way that could lead people to believe that the power benefit of continuing the Treaty is only 10% of the Canadian Entitlement. British Columbia believes that the value is much higher than the current return of the Canadian Entitlement when power benefits along with other values and interests that benefit from coordinated operations are factored in. Coordination under the Treaty allows the hydro system to respond to seasonal challenges during cold winter conditions when inflows are reduced, as well as dry hot summers when irrigation, fisheries and recreation are competing for the same low flows. In both instances, Canada releases flows first to maximize U.S. power production. Without the Treaty, BC Hydro would operate solely for British Columbia domestic energy and other needs in a manner quite different than today, with system coordination greatly diminished. This would create significant uncertainty for the U.S. that would affect system planning and reliability across the U.S. portion of the Columbia River Basin. Ecosystems: Flexibility within the Treaty has allowed changes in coordinated operations to benefit ecosystem values. Supplementary agreements have contributed to enhancing ecosystem values, particularly U.S. salmon recovery, by augmenting flows in the spring to better imitate the natural hydrograph, and augmenting flows during late summer and during dry years which are particularly critical to fish survival. As climate change predictions foresee hotter and drier conditions for the lower Columbia Basin, this coordination will become only more valuable. Without the Treaty, these beneficial ecosystem operations would cease to exist and water in the Canadian portion of the basin would be managed solely for Canadian environmental and other interests. Past and ongoing litigation has prompted U.S. agencies, Tribes and other stakeholders to invest to heavily in ecosystem recovery over the last decades. Decisions on the future of the Treaty should ensure that these investments are not lost. <u>Water supply</u>: Additional Canadian flows for power production and ecosystems during low water conditions also benefit to some degree consumptive use as U.S. water managers re-regulate flows using Grand Coulee Dam for a host of interests competing for a limited resource. The changing flood control regime in 2024, requires greater emptying of U.S. reservoirs and risks upsetting the sensitive water allocation balance that is becoming increasingly strained. Climate change predictions will likely exacerbate the current tension between water users. <u>Navigation</u>: Commercial navigation on the Columbia River is a key contributor to the economic sustainability of the U.S. Pacific Northwest. Changes to Treaty flood control provisions will likely result in more frequent higher flows that could worsen navigation conditions by increasing shipping times and affecting docking operations. High flows may also increase sedimentation thereby reducing channel depth and increasing dredging costs. During low flow conditions and without Treaty flow augmentation from Canada, navigation interests will also likely be impacted by reduced channel draft, disrupting navigation and raising the risk of grounding. #### Treaty Benefits in Canada The only benefit to Canada from the Treaty is the sharing of downstream benefits from additional power production potential made possible by the coordination of flows. Half of the potential additional power that could be realised due only to Treaty operations, which is called the Canadian Entitlement, is returned to Canada in electricity at the border. The U.S. has chosen to use these Treaty power flows for other, equally important, purposes besides power production. This should not be used as a reason to reduce equitable benefits to Canada. As dictated by the Treaty, the amount of Canadian Entitlement is forecast to decrease over time while British Columbia continues to be impacted, through reservoir operations and ongoing costs to maintain the Treaty dams, and our flexibility to manage for the needs of BC basin residents is constrained in order to meet Treaty requirements for U.S. interests. This has caused some residents to question whether the fundamental Treaty principle of creating and sharing benefits equitably is still valid. Simply put, without the Canadian Entitlement, British Columbia would see no reason for the Treaty to continue. #### *The Future of the Treaty* The Columbia River Treaty between Canada and the United States is known throughout the world as one of the most successful examples of a transboundary water treaty. Other countries see the agreement as setting a benchmark on cooperation and benefit sharing. The Treaty is founded on the principle, set out in the Treaty's preamble, that the greatest benefits to each country can be secured through cooperative measures. The alternatives to cooperation in each country require careful examination. As climate change will increasingly alter the environment of the Columbia basin in the broadest sense, reservoir management and coordination are seen as important tools in adapting to climate change challenges that threaten salmon recovery, water supply and energy reliability. This would suggest a need for more collaboration, not less. As both Canada and the U.S. continue to review options regarding the future of the Treaty, it is important that citizens on both sides of the border understand how the Treaty is beneficial, who benefits, how further cooperation can enhance or create new benefits, and what is at risk of being lost if the Treaty is terminated. DISCLAIMER: The content of this paper represents the views and perspectives of the Province of British Columbia and is not to be interpreted necessarily as the views of the Government of Canada. #### 1. INTRODUCTION The Columbia River Treaty (Treaty) between Canada and the United States (U.S.) is known throughout the world as one of the most successful examples of a transboundary water treaty. Other countries see the agreement as setting a benchmark for cooperation and equitable sharing of benefits on an international river system. The Treaty, signed in 1961 and ratified in 1964, has proven to be durable over time. The flexibility within the Treaty has allowed operations to adapt to evolving societal values. The construction and operation of Treaty dams are designed to provide flood control and hydropower benefits in both countries, and these benefits were to be shared fairly and equitably. As a result of the Treaty, development has taken place in the flood plain and costly flood damage including loss of life has been greatly reduced, while hydropower generation that has supported billions of dollars in economic development has increased. However, demands on the Columbia River have increased significantly since the Treaty was signed. New and emerging issues, not foreseen in the 1960s, now pose significant challenges to resource managers on the Columbia River and its tributaries. Some of these challenges include: operational changes to support salmon recovery efforts and to enhance other ecosystem values; the rapid growth of renewable resources and implications for reliability of the power grid; increasing stress on water supply for urban growth, industry, irrigation and agricultural development; the continued development into the historic flood plain and implications for flood risk management; the importance of navigation and recreation in supporting the regional economy; and growing awareness and knowledge of the impacts of climate change and need for adaptation. All of these challenges have implications on current and future coordination on the Columbia River between the U.S. and Canada. There are two important elements of the Treaty that have led both countries to launch separate reviews of the Treaty. The first is the
option for either country to unilaterally terminate most provisions of the Treaty at its earliest termination date of September 16, 2024 (60 years after ratification) by giving the required minimum ten years notice. The second is the expiry of the pre-paid assured flood control operation in Canada of 8.45 million acre feet (MAF) that the U.S. purchased for sixty years in 1964 and the resulting shift to an ad hoc "Called Upon" flood control operation. Both of these changes could significantly alter the coordination benefits that have accrued to both countries through the Treaty. There is a view in the U.S. that Canada receives a disproportionally high share of power benefits from the treaty and that those benefits should be reduced. The Province of British Columbia refutes that premise. The value of coordination to the U.S. is much broader than the value to Canada. The only benefit to Canada of continued coordination under the Treaty beyond 2024 is the return of the Canadian Entitlement, which is one half of the incremental downstream power potential resulting from Treaty operations. In order to understand the value of this coordination, U.S. stakeholders need to ask themselves: How important is knowledge of planned operations in Canada to U.S. planning for its entire coordinated system in the U.S. Pacific Northwest? How important are good communication and coordination during extreme weather events which can have significant consequences for property and safety? How important is the coordination of flows in managing and reducing ecosystem impacts and in helping U.S. salmon recovery efforts? How critical to economic development are Canadian flow releases during summer low flow periods and droughts for water supply, recreation, navigation and fisheries? And is the value of all of these interests worth risking by terminating the Columba River Treaty? The purpose of this paper is to examine some of these questions and to provide a Province of British Columbia perspective on the U.S. benefits from continued coordination under the Treaty beyond 2024, and the risks to U.S. interests if the Treaty is terminated. #### 2. THE COLUMBIA RIVER TREATY TODAY #### 2.1 Current Operations Hydroelectric systems in British Columbia and the U.S. Pacific Northwest are managed to both meet electricity demand and also manage the water for multiple purposes. This is a complex system, made all the more complicated by a series of dams and reservoirs where operations at one affect the others. The Treaty is implemented by the U.S. Entity, represented by the U.S. Army Corps of Engineers (USACE) and Bonneville Power Administration (BPA), and the Canadian Entity, BC Hydro. BC Hydro is a Crown Corporation owned by the Province of British Columbia (BC).² The Province of British Columbia is the Canadian Entity for the purpose of the disposal of the Canadian Entitlement. #### Canadian Columbia River facilities The Canadian portion of the Columbia River basin comprises only about 15% of the physical area, but contributes approximately 38% of the basin runoff on average and up to 50% of the peak flood volume at The Dalles, Oregon in high flow years. This proportion is expected to increase in the future as climate change scenarios predict the Canadian portion of the basin will get wetter and the lower U.S. portion of the basin to get dryer. The effective storage volume in Canada is 20.5 million acre-feet³ (MAF) which is close to 50% of the active storage currently available in the entire Columbia River basin. The Columbia River in Canada has three dams in series – Mica, Revelstoke, and Hugh Keenleyside. The upstream most project – Mica – is the largest storage on the whole Columbia system with 12 MAF of active storage. It should be noted that Revelstoke Dam is not a Treaty dam and is operated for daily/weekly shaping. Mica and Revelstoke will have a combined generating capacity of approximately 5,700 megawatts (MW) by 2024, or 50% of BC Hydro's generating capacity, and are critical in reliably meeting British Columbia domestic load. Hugh Keenleyside Dam is the third project in the series. It is a low head dam and despite being the third largest reservoir in British Columbia with 7 MAF of active storage, it has relatively little power generation. The primary purpose of this dam was to provide flood control and power benefits to the U.S. under the Treaty. In 2002, the 185 MW Arrow Lakes Generating Station was installed adjacent to the dam. Duncan Dam (1.4 MAF) on the Kootenay River is the third Canadian Treaty dam and does not currently have any power generating capability. ² All proprietary rights, title, interests and obligations under the Treaty, including the Canadian Entitlement, were transferred to British Columbia under the 1963 Canada – British Columbia Agreement. ³ Although the Columbia River Treaty called for 15.5 MAF of storage to be built at Mica, Arrow and Duncan, Mica was built with an additional 5.0 MAF of storage (referred to as Non-Treaty Storage), which is managed under the Non-Treaty Storage Agreement. The Treaty provides the foundation for the Non-Treaty Storage Agreement, without a Treaty this Agreement would not exist. #### U.S. Columbia River facilities The U.S. portion of the Columbia Basin represents approximately 85% of the physical area and contributes approximately 62% of basin runoff on average. There are eleven hydroelectric facilities on the U.S. Columbia River main stem with a combined generation capacity of 20,347 MW. Six of these projects are owned by the U.S. Federal government (U.S. Bureau of Reclamation/USACE) and five of these projects are owned by Public Utility Districts (Mid-Columbia PUDs). Operations of these and other non-mainstem U.S facilities are coordinated by the Pacific Northwest Coordination Agreement⁴ which coordinates power production while taking into account non-power uses for water resources. This agreement enables the region's major generating utilities to gain many of the coordination benefits they would realize if the system were a single utility managed by a single owner. The largest generating facility in the Columbia River system is the Grand Coulee Dam. It is the largest hydropower facility in the United States with a total generating capacity of 6,809 MW. The reservoir has approximately 5 MAF of active storage and plays a key role as part of the Columbia Basin Project, irrigating more than 600,000 acres of farm land that produces almost \$630 million per year in irrigated crops. Grand Coulee is deemed to be the cornerstone for water control on the Columbia River in the U.S.⁵. BPA describes how some aspects of the interconnected multi-use system⁶ are managed in the U.S. as paraphrased below: The Federal Columbia River Power System is a complex system of 31 interconnected dams on the Columbia, Snake, and Willamette rivers. The dams are authorized for many purposes including navigation, fish mitigation, irrigation, and flood control. The multi purposes of the dams mean that Bonneville cannot simply produce power whenever needed. Water released at one dam for power or other purposes will affect the water and power production at all the downstream dams. *This is why international cooperation is essential* [*B.C. emphasis*]. Grand Coulee is the only significant storage dam in the U.S. on the mainstream of the Columbia River. All of the downstream dams are essentially managed as run-of-river. Bonneville has very limited control over when power is produced. Nevertheless, Bonneville must produce power to meet its load obligations and adjust generation for energy imbalance to maintain the stability of the electrical grid. The federal agencies cannot choreograph this complex operation unless they plan operations months in advance. Bonneville creates the operating plan of how water will be deployed for power and all the other system purposes 18 months in advance. This plan is then constantly adjusted for changing water ⁶ United States Department of Energy – Bonneville Power Administration. Docket No. NJ12-7-000, Request for Leave to Answer and Answer to Protests and Comments. Section IIB(2i) page 13-18. ⁴ PNCA is an Agreement for Coordination of Operations among U.S Power Systems of the Pacific Northwest signed on September 15, 1964 by the USACE, BPA, the Bureau of Reclamation, and the major generating utilities in the Pacific Northwest. The Agreement stipulates that the parties agree to coordinate the operation of their respective systems to provide optimum Firm Load Carrying Capability and useable secondary energy for the Coordinated Systems. It also outlines water storage and power transfer rights and obligations to all the participants to the Agreement. The current PNCA terminates on September 15, 2024, one day before the earliest termination date of the Columbia River Treaty. ⁵ Information from Bureau of Reclamation's website http://www.usbr.gov/pn/grandcoulee/ conditions and plans are updated for the next day, the next week, the next month, and outward for the 18 month period. Only if the system is carefully planned can Bonneville ensure that the system will be managed to satisfy all federal obligations (which include flood control, power, ecosystems, recreation and navigation among others). #### Other Agreements Stemming from the Treaty The Treaty permits the Entities to develop agreements that allow for mutually beneficial changes to baseline Treaty operations to adjust for changing values and needs, including fisheries interests. This has led the development of a number of related agreements over the years, including the Non-Treaty Storage Agreement, Supplemental Operating Agreements, and the Libby Coordination Agreement. When Mica Dam was constructed, it was built with an additional 5 MAF (6.2 km³) of live storage capacity beyond what was required under the terms of the Treaty. So long as the Treaty continues, Canada cannot fully utilize this additional reservoir storage without agreement
from the U.S. Entity as doing so could conflict with reservoir discharge requirements under the Treaty. As a result, this additional storage is coordinated under a commercial agreement between BC Hydro and BPA called the Non-Treaty Storage Agreement (NTSA). The NTSA provides both fisheries and power benefits as described in later sections. #### 2.2 A Coordinated System #### 2.2.1 Flood Control Currently, Canadian Treaty dams are drawn down (or drafted) to, or below their prescribed flood control rule curves, also called storage reservation diagrams. These are derived from provisions within the Treaty and the USACE Flood Control Operating Plan. These storage reservation diagrams dictate the minimum amount of vacated space required for a given April to August inflow forecast volume so that in larger snow-pack years the reservoirs can store flood flows and reduce major downstream flood damage and risk to the public. The power draft of up to 15.5 MAF required under the Treaty operations usually causes the reservoirs to be operated lower than the flood control storage reservation diagrams, and this additional draft provides space for additional flood peak reductions. Reservoir levels can be below, but cannot be above the flood control rule curve. In other words, flood control operation for the protection of life and property has priority over operations for power or other uses. Treaty operations have significantly reduced flood damage on the Columbia River system. Since the Treaty dams were constructed, there has never been a peak flow over 600,000 cubic feet per second (cfs) at The Dalles, Oregon, the flow considered to be the beginning of major flood damage in the lower Columbia River. Historically, prior to the Treaty, one-third of the years had peak flows over 600,000 cfs. There are four years of record where the peak unregulated Columbia River stream flows at The Dalles did or would have exceeded 1,000,000 cfs without Treaty storage: 1894, 1948, 1972, and 1974. The first two of these pre-Treaty floods caused catastrophic damage and loss of life. Moreover, the continued provision of assured flood control has enabled further development of the lower Columbia flood plain and port facilities. The USACE has estimated damages prevented by Columbia storage regulation during 1972, 1974, 1996 and 1997 at about \$260, \$306, \$227 and \$379 million, respectively. In 2012 alone, USACE estimates of flood damage prevented (by Treaty and non-Treaty facilities) was approximately \$2 billion. These values are not overstated as they are not inflated to today's dollars, and are based on outdated estimates of development in the flood plain. More recent estimates by USACE estimate that, on average, annual flood damages avoided on the U.S. Columbia system are approximately \$100-200 million. Given that Canadian storage accounts for approximately 50% of total active storage on the system it can be estimated that the operation of Treaty projects provides approximately \$75 million per year in avoided flood damages. Cumulative flood damages prevented by projects (Treaty and non-Treaty) in the Pacific Northwest have totalled almost \$32 billion. The assured annual flood control operation that was purchased by the U.S. for 60 years for \$64.4 million expires on September 16, 2024, regardless of whether the Treaty continues or is terminated. Thereafter, flood control will switch to an ad hoc "Called Upon" operation, described later in this paper. #### 2.2.2 Power Production The coordinated power operations under the Treaty are specified in Assured Operating Plans (AOPs) and Detailed Operating Plans (DOPs) which provide assured operation of Canadian storage and more certainty with respect to the monthly volume of flows that will be crossing the border. The AOPs, prepared five years in advance under procedures set out in the Treaty, are designed to achieve a joint optimum power operation in Canada and the U.S. by regulating the flows on the Columbia River. The AOP is used to determine the downstream power benefits, which are the increased generation capability at downstream U.S. projects based on the coordinated Canadian Treaty storage operation to improve and optimize generation at downstream U.S. projects. These downstream benefits are shared between the U.S. and Canada and the resulting Canadian share is called the Canadian Entitlement. Prior to the commencement of each August to July operating year, the Entities prepare the DOP, which allows changes in operations where the Entities agree there are mutual benefits. The changes in recent years have been primarily to address ecosystem values in Canada and the U.S. The changes included in the DOP do not affect the determination of downstream power benefits. Within each year the Treaty Storage Regulation (TSR) studies and the weekly (or when required daily) coordination phone calls provide the U.S. Entity certainty of flows on any given day/week. Other agreements provide the ability to modify flows due to water conditions or other unusual conditions when possible for mutual benefit. The operating restriction that the AOPs, DOPs, and TSRs place on Canadian storage do not apply to or constrain management of U.S. storage. This allows the U.S. to use the improved stream flows that Canada provides in any manner that it sees fit to meet its domestic needs and allows the U.S. to manage its own system to meet multiple objectives. The Treaty enabled additional hydropower related benefits such as installation of additional generators at downstream dams, the electrical intertie between the Pacific Northwest and California, the Pacific Northwest Coordination Agreement⁴, and regional preference legislation in the U.S. for federal hydropower. 9 http://www.nwd-wc.usace.army.mil/PB/MRC/pdf/WMBRIEF_MRC_Physical.pdf ⁷ U.S. Army Corps of Engineers. *Effect of Reservoir Regulation on Flood Peaks and Damages: Columbia River Basin*. http://www.nwd-wc.usace.army.mil/crwmg/reports/ ⁸ February 2013. Permanent Engineering Board Meeting. Coordinated operation of the U.S. power system in the Pacific Northwest with the Canadian Storage under the Columbia River Treaty has provided a reliable system to serve customers electric load. Implications for reliability post-2024 are discussed in section 3.3. One of the purposes of the Treaty is to optimize the power production of the entire coordinated system across the Basin. In low water years, or when seasonal flows are less than expected, the whole system, including the Canadian dams, enters into "proportional draft" operations. Proportional draft means that Canada provides extra water in dry years, an assured winter flow, and summer draft in long dry summers. The low generation value dams like Hugh Keenleyside are drafted before the high generation value dams like Grand Coulee. Essentially, proportional drafting means Canadian reservoirs have to release more water than inflow in dry conditions to benefit the U.S. For example, while Arrow Lakes and Grand Coulee reservoirs have similar amounts of active storage (approximately 7 MAF and 5 MAF respectively), Arrow Lakes Reservoir has a low head dam with only 185 MW of generating capacity, while Grand Coulee is a higher head dam with 6,809 MW of generating capacity. Under the terms of the Treaty, the reservoirs are drafted in order of priority to maximize power production. What this means is that Arrow Lakes is drafted before Grand Coulee, and the very head-sensitive Grand Coulee project is able to stay at a higher elevation in order to maximize power production. This operation also provides additional benefits to recreation, navigation and other interests in the U.S. while potentially impacting similar interests in Canada. Another example of how the Treaty helps maintain reliability is how reservoir operations respond to energy needs during the winter. In the Pacific Northwest cold arctic outbreaks typically occur once or twice a winter for periods as long as a few weeks. Cold arctic outbreaks: - significantly increase the regional electrical load, as more heating equipment is in service more frequently and for longer cycles; - significantly reduce inflows available for hydro-electric generation as the runoff freezes into ice and snow and melting of snow and ice is reduced; and - virtually eliminate wind generation within the region due to the large stable air mass associated with arctic outbreaks. In these instances, Canadian reservoirs are operated to respond to the increased power needs during low flows in the U.S. by providing assured winter flows through proportional drafting. #### 2.2.3 Ecosystem Since the Treaty was ratified, society's values have changed, and environmental interests have become increasingly important in both countries. More specifically in the U.S., operations for salmon recovery have been designed so that they partially restore spring freshet flows which are needed to move migrating salmon smolts past the dams and downstream to the ocean as rapidly as practical. The Biological Opinion by National Oceanic and Atmospheric Administration (NOAA) sets passage objectives and spill (water overflow) targets for all of the Federal Columbia River Power System Dams. Recent Biological Opinions for Columbia salmon require holding as much water as possible in U.S. reservoirs through the early spring by maintaining the reservoir levels near their flood control elevations. This provides the maximum amount of water available for discharges in late spring and summer to help fish travel downstream more rapidly. Surety of flows from Canada enables fisheries managers in the United States to better plan these operations. The Technical Management Team (TMT), comprised of federal agencies, tribes, and states, makes recommendations on U.S. dam and reservoir operations for fisheries based on the forecast runoff and the knowledge of assured Canadian operations. Flexibility under the Treaty has resulted in operational changes
(via Supplemental Operating Agreements, NTSA, and the Libby Coordination Agreement) that benefit U.S. and Canadian fish including: - Vernita Bar protection flows for salmon; - Draft of projects during the summer to help meet fish flow objectives at the McNary Dam; - Chum salmon operation in fall and winter below Bonneville Dam; - White fish and trout spawning flows below Arrow; and - Libby white sturgeon and bull trout releases. The Supplemental Operating Agreements, developed by the Canadian and U.S. Entities for within-year operations, generally provide for 1 MAF of flow augmentation that the U.S. can release in June/July. There have been numerous such agreements entered into over the years, beginning in the 1990s. Treaty power and flood control operations provide ancillary benefits to ecosystems. Proportional drafting for power generation during the dry season or low flow years also enhance fisheries flows. In addition, NTSA provides additional benefits for U.S. fish interests by allowing for the use of an additional 5 MAF of Canadian storage that is not coordinated under the Treaty. The dry year release provision that is available in the NTSA is particularly valuable for U.S. fisheries interests because it guarantees the U.S. a 0.5 MAF unilateral release right for use in May/June to support salmon migration in the lower Columbia River during the driest 20% of runoff years. If the Treaty is terminated, it is unlikely that the Canadian Entity would continue to pursue these and other mutually beneficial agreements for fisheries because there would be no baseline from which to negotiate changes. The Canadian Entity would already have the flexibility to balance the interests in Canada. #### 3 THE COLUMBIA RIVER TREATY POST-2024 The previous chapter described how coordination under the Treaty has been successful in meeting its primary objectives while shifting operations to address values, such as fisheries, that were not contemplated in the original agreement. The following section looks forward to 2024 and beyond, and describes what will and may change, depending on the choices of both countries regarding the future of the Treaty. The first section outlines how climate change is predicted to affect the hydrology of the Columbia Basin. Climate change was not a factor when the Treaty was developed fifty years ago. However, the outlook on climate change provides the necessary context within which to examine the implications on U.S. interests into the future. #### 3.1 Climate Change Climate change in the Columbia Basin continues to be researched on both sides of the border. Data indicates that over the past century the U.S. Pacific Northwest and British Columbia have been getting warmer. The general trend in projected climate change scenarios is for more precipitation in winter, spring and fall, and less precipitation in summer. The snowmelt will start earlier, and spring and early-summer flows will peak earlier and be substantially higher. As well, late-summer and early-fall flows will be substantially lower and the low flows will last longer. However, because of BC's colder, higher elevation topography, snowpack in this region will be less impacted than U.S. areas further to the south. The late summer low flows will also be exacerbated by a reduction in glacier melt as the glaciers continue to retreat. Although the impact of glacier melt on annual flow volumes is relatively minor, even glacier cover of 5%, such as in the Mica basin can contribute significant flow in the late summer. During the warm and dry summer of 1998, for example, glacier melt contributed 35% to the Mica basin's September stream flow. The impact of receding glaciers should be included in any climate change studies because of glaciers' significant effect during late summer, low flow periods. In Canada, the Columbia and Kootenay watersheds are projected to see an overall annual increase in water supply and are expected to remain snowmelt dominated. The hydrology in these northern sub-basins will not be impacted to the same degree by climatic changes as will the lower U.S. sub-basins. In the U.S., a number of studies indicate the changes to the annual runoff can be expected to be more significant. Many of the U.S. sub-basins will transition from snowmelt dominated to hybrid rainfall-snowmelt watersheds, and the current hybrid sub-basins will turn into rainfall-dominated watersheds. Some studies suggest that certain sub-basins could also potentially be drier with a corresponding decrease in water supply. In general, the longer periods of low flows will coincide with periods when out-of-stream demands, such as for domestic water supply and irrigation are highest and in-stream demands, such as for hydroelectricity generation, fish habitat and recreation are critical. Higher temperatures and longer low flow periods could also pose a risk to fish stocks that are already under stress, potentially causing higher mortality rates during that period. The seasonal shift in flows throughout the entire Columbia system, and the shift from snowmelt dominated to a mixed snowmelt/ rainfall or rainfall dominated system for some of the southern sub-basins, could have other implications for U.S. flood risk management and ecosystem function on the river. Climate change in general could result in a need to prepare for increased frequency and unpredictability of extremes in weather at both ends of the spectrum for flooding and drought. Reservoirs provide a mechanism that can assist in adapting to climate change challenges by increasing storage during times of relative water abundance and releasing stored water during times of relative water scarcity. The coordination and flexibility contained within the Treaty provide important mechanisms to help address some of the challenges climate change will bring. 8 ¹⁰ BC Hydro, *Potential Impacts of Climate Change on BC Hydro's Water Resources*, 2012 River Management Joint Operating Committee (Bonneville Power Administration, U.S. Army Corp of Entingeers, Bureau of Reclaimation), *Climate and Hydrology Datasets for use in the RMJOC Agencies' Longer-Term Planning Studies*, 2011 #### 3.2 Flood Control #### 3.2.1 Called Upon Flood Control As of September 2024, Canadian flood control commitments to the U.S. will be limited to an ad hoc "Called Upon" approach, as set out in the Treaty. The U.S will also have to pay the Canadian operating costs and economic losses for each Called Upon request. These Treaty provisions are not well defined and there is substantial disagreement between the two Entities on their interpretation. After 2024, the U.S. will have to first make effective use of its reservoirs before 'calling upon' Canada to provide flood control space; this obligation exists whether the Treaty continues or is terminated. Flood damage risks continue well into June as even average water years have the potential to develop into large peak flow years due to precipitation and high temperatures that may come late in the spring. The USACE's own extensive modeling¹² to quantify flood risk shows that the risk of flooding is greater post-2024 than pre-2024, even with the advantageous assumptions of Called Upon made by the USACE (which British Columbia disagrees with). Maintaining the same level of risk essentially requires having a similar amount of flood control space available in Canadian reservoirs pre- and post-2024, and the ability to direct refill of Canadian storage when required. The U.S. view of Called Upon Flood Control won't ensure the same level of risk as compared to pre-2024 and yet would still require significant changes to operations at U.S. reservoirs that would likely impact multiple water uses in the U.S. British Columbia's view is that Called Upon Flood Control may be able to provide the same level of flood risk to the U.S. by using all the smaller U.S. reservoirs on the Columbia, Snake and other tributaries. Such operation would likely impact multiple water uses on these smaller reservoirs. The Province of British Columbia believes that there are more efficient ways to manage flood risk than the default and that Called Upon Flood Control is a step backwards. Under this flood control regime, the U.S. must make effective use of "all related storage in the United States" before seeking additional help from Canada. This means that U.S. reservoirs will have to draft deeper and more frequently than they currently do. This requirement will likely have significant impacts on U.S. interests such as fisheries, recreation, irrigation and potentially navigation. Effective use at Libby dam, which is located in Montana and resulted in the creation of the Koocanusa Reservoir which extends approximately 70 kilometers back into Canada, will also have impacts on Canadian interests, although it will also increase flood protection downstream in Canada. The following sections describe the potential impacts of Called Upon Flood Control and the differing views between the Canadian and U.S. Entities. #### **Implications of Called Upon** Post-2024, even if the Treaty continues, the Canadian Treaty dams will no longer have to conform to the flood control rule curves under the Flood Control Operating Plan described in section 2.2.1 because of the shift to Called Upon Flood Control. This would allow the Canadian Entity to operate Canadian reservoirs very differently than they are currently even though the Treaty power draft would continue. The Treaty allows _ ¹¹ The Treaty does not explicitly use the terms "Called Upon" and "On-Call" for the ad hoc flood control provided under the Treaty for post-2024 and pre-2024, respectively. Instead this has become established terminology used by the Canadian and U.S. Entities. ¹² Flood Risk Analysis – Iteration 2 Results (http://www.crt2014-2024review.gov/PowerPoint.aspx) ¹³ Columbia River Treaty Protocol section 1.(2) Canada the flexibility to move water between the different Canadian Treaty dams as
long as the total power draft remains the same. This flexibility increases without the current flood control rule curves which expire in 2024. In particular, to maximize domestic power production, Arrow Lakes Reservoir could be kept at a high, more stable elevation; consequently the storage space in Arrow Lakes Reservoir for flood control that the USACE currently relies upon would not be immediately available. Arrow Lakes Reservoir is particularly important for U.S. flood control because it takes only four days for flow releases from Arrow to reach the lower Columbia. Four days is within the forecasting timeframe so Arrow, along with Grand Coulee, can be used to manage flows during flood events. Water from headwater reservoirs such as Mica Dam and Hungry Horse have longer travel times. In the longer term, all dams require significant capital investment and maintenance which can be significantly higher than the initial capital cost of the project. An evaluation of the small amount of power generation and the potential cost of major upgrades to Hugh Keenleyside Dam might lead to different operations or physical configurations than are currently modelled if the Treaty is terminated. This along with potential water licensing changes (i.e. changes in allowable minimum and maximum elevations) should the Treaty be terminated, could affect the storage available under post-2024 Called Upon Flood Control. Although Called Upon Flood Control continues regardless of whether the Treaty continues or is terminated, this obligation only extends for the life of the Treaty dams and there is no requirement for Canada to maintain the same amount of storage. #### Called Upon Rights and Obligations The Canadian¹⁴ and U.S.¹⁵ Entities have differing views on the rights and obligations related to Called Upon Flood Control. Each Entity has published a paper describing their positions. The respective views differ primarily over: - 1) the forecasted peak flow at The Dalles that may trigger a Called Upon Flood Control request; and - 2) which U.S. reservoirs must be used to provide effective use flood control. British Columbia's view is that Called Upon Flood Control could only be used when forecasts of potential floods indicate there is a reasonable risk of exceeding 600,000 cfs at The Dalles. Based on this flow target, Called Upon Flood Control is expected to be used infrequently and only in very large snow pack years when effective use of all U.S. storage will be unable to maintain flows at The Dalles below 600,000 cfs. Called Upon Flood Control is not a mechanism to transfer the responsibility of managing the risk of changing or inaccurate forecasts from U.S. storage to Canadian storage. For the U.S. to be eligible to call upon Canada for flood control assistance after 2024, the U.S. must first plan for, and use, to the extent necessary all available U.S. storage that can contribute to providing U.S. flood protection ('effective use'). This effective use requirement will result in changes to the current operations of ¹⁵ U.S. Army Corp of Engineers, White Paper on Columbia River Post-2024 Flood Risk Management Procedure. September 2011. Canadian Entity, Canadian Entity View of Columbia River Post-2024 Called Upon Procedure. February 14, 2013 http://blog.gov.bc.ca/columbiarivertreaty/files/2012/07/130214-CanadianEntity_View_CRT_Post-2024_CU-FINAL4.pdf U.S. Army Corp of Engineers, White Paper on Columbia River Post-2024 Flood Risk Management Procedure. U.S. reservoirs. The U.S. reservoirs will be drawn deeper more frequently and will result in risk and occurrences of not being able to meet refill targets. U.S. studies have demonstrated that this may create impacts primarily to fisheries; however other interests are also being examined, such as water supply and irrigation, recreation and navigation. The U.S. Entity's view that flows of 450,000 cfs at the Dalles are the trigger for Called Upon Flood Control means that the impacts of effective use would be more frequent. This effective use requirement leads to the second area of disagreement between the Entities with regards to the implementation of Called Upon Flood Control. Effective use requires that the "...U.S. will call upon Canada to operate [Canadian storage] only to control potential floods in the U.S. that could not be adequately controlled by *all the related storage facilities in the U.S.*" British Columbia interprets this provision to mean that if a facility can be effective in reducing flows at The Dalles it should be part of the effective use requirement before calling upon Canada. To date, U.S. studies have been limited to a small number of headwater projects (Libby, Dworshak, Hungry Horse, Brownlee) and Grand Coulee. BC Hydro has conducted a preliminary analysis to determine the ability of smaller U.S. reservoirs on the Columbia main stem and tributaries to reduce flows at The Dalles. The results show that drafting other U.S. projects can be effective in reducing peak flood volumes as required by the Protocol. U.S. flood control operations, therefore, would need to include many additional projects such as Chief Joseph, Wells, the five mid-Columbia facilities (as was provided pre-1970), McNary, John Day, The Dalles, and Lower and Upper Snake dams. BC Hydro analysis estimated U.S. energy losses due to effective use at these facilities (in a Called Upon year) to be approximately 1,300-3,000 gigawatt hours with an estimated value of \$40 to \$150 million. Other potential adverse impacts on fisheries, recreation, irrigation and navigation interests have not yet been evaluated. #### Winter Flood Events Called Upon Flood Control is impractical for dealing with winter flood events. Unlike spring flood events, which are mainly snowmelt driven and can be planned months in advance based on inflow forecasts, winter flood events tend occur due to intense rain events which are less predictable and more immediate. It is unclear how the U.S. could operate to show effective use of their facilities in these instances. The U.S. Entity has not yet put forward a plausible approach for addressing these issues. #### 3.2.2 Coordinated Flood Risk Management Canadian storage is valuable in mitigating risk of flooding in the U.S., and it is British Columbia's view that to maintain the same level of flood risk post-2024, the U.S. should be interested in more coordination with Canada, not less. Continuing the Treaty would provide the U.S. with a greater ability to manage flood risk even under a Called Upon flood control regime, as the U.S. will be able to rely on information on the coordinated and assured Canadian power draft and a forecast of the planned Canadian reservoir operations throughout the year. However, the U.S. view of Called Upon may not protect U.S. locations to the same level of flood risk pre- and post-2024 as previously discussed. Potential climate change scenarios may also increase the flood risk, especially with respect to more frequent extreme weather events. British Columbia believes that working collaboratively within the Treaty framework, the U.S. and Canadian Entities can find a solution to the problems brought about by the change in flood control regime post-2024, and seek an agreement to supplement Called Upon Flood Control that will not have undue adverse impacts on other interests. Mechanisms for addressing winter storms are also possible. Outside of the Treaty framework, such agreement would be much harder and more costly to achieve, if not impossible. #### 3.3 Power Production and Reliability During the Treaty review, BPA's power analyses have focused on average energy benefits (over a 70 year period) based on assumed Canadian operations, and the resulting information is presented in a way that could lead people to believe that the power benefit of continuing the Treaty is only 10% of the Canadian Entitlement. British Columbia believes that the value is much higher, and even exceeds what is currently returned to Canada. Framing the value question around the average cost of energy is missing a larger issue of fulfilling the core responsibility of utilities to provide reliable power at all times (for example, during periods of low flows). Reliability of the electrical system is important to BPA, and to the Public Utility Districts that share in the benefits of the coordination as well as share in the cost of the return of the Canadian Entitlement to Canada. The importance of coordination to planning the whole Pacific Northwest system was already discussed in Section 2.2.2, which outlined how planning of up to 18 months in advance is required for reliable power supply and the ability to manage for other values. As mentioned in BPA's own documents, 'international cooperation is essential'. Currently, certainty around Columbia River regulation from Canada for a given water condition is the backbone around which additional inflows and operations are coordinated throughout the downstream system. Terminating the Treaty would create significant uncertainty in downstream operations as Canadian operations would be unknown and could not be relied upon. Utilities have a fundamental obligation to reliably meet their firm electrical load obligations. Reliability incorporates different components, including: - <u>Firm Energy</u>: The fuel for the Federal Columbia River Power System (FCRPS) is water. The amount of available water depends upon the weather and varies greatly throughout the year and from year to year. Utilities must be able to meet their load obligation in prolonged dry periods that could extend over multiple years. - <u>Seasonality of loads</u>: The system must be able to meet the load as it changes seasonally even during winter cold snaps when inflows are significantly reduced, and during dry hot summers when irrigation, fisheries, and recreation are
all competing with power for water. - <u>Dependable Capacity</u>: Sufficient capacity is required to reliably generate electricity at the instant it is required. As the balancing authority, BPA must provide sufficient reserve capacity to back up the high amount of wind and other intermittent energy sources connected to its system. - Over supply and wind integration: Utilities must be able to shed generation when there is more generation than load. This is an increasing issue for the Pacific Northwest. The Treaty provides assured winter flows, drafts in dry years to maintain the U.S. ability to meet its firm load during high demand and drafts in dry summers when U.S. inflows are reduced. As such, the Treaty plays a critical role in providing reliable power to the entire U.S. Pacific Northwest, even in drought conditions. The reliability and planning value of coordination is difficult to quantify as it provides benefits to purposes beyond power production. However British Columbia believes coordination is worth much more to the U.S. than the Canadian Entitlement, especially when all the risks to water supply, ecosystem, recreation, and navigation are also considered. The following sections describe the value of the Treaty to the reliability of the power system. The first section, however, highlights the risk of assuming a Canadian operation will stay the same if the Treaty is terminated by describing different possible Canadian operations. #### Potential operational changes Under the terms of the Treaty, reservoirs are drafted in order to maximize power production. For example, Arrow Lakes Reservoir is drafted before Grand Coulee, and as a result, the very head-sensitive Grand Coulee hydro project is able to maintain a higher elevation in order to maximize power production. Arrow Lakes Reservoir has the most potential of any of the Canadian reservoirs to change operations post 2024. Although it is a large storage facility (7.1 MAF), it has a relatively low head dam; the associated power plant (Arrow Lakes Generating Station) has only 185 megawatts of installed capacity. If the Treaty is terminated, an optimal power operation for Canada would keep this reservoir near full to maximize energy production. Essentially Arrow Lakes Reservoir could operate as a near run-of river facility with only a small draft for local Canadian flood control. This operation could release more water in spring but less in summer. However, there are a number of domestic environmental and social interests around the Arrow Lakes Reservoir and the downstream river reach that could cause the reservoir to be operated much differently than an optimal Canadian power operation. For example, Arrow Lakes Reservoir could be operated at a much lower level to benefit vegetation and wildlife interests in the Revelstoke reach. Or, flow releases from Arrow Lakes Reservoir during the spawning period January to March could be minimized to reduce potential stranding of whitefish and trout eggs. Essentially, Arrow Lakes Reservoir could re-regulate the flows from Mica for environmental and social benefits in Canada. The U.S. would have to access their reliability needs without the assured winter flows under the Treaty. If the Treaty is terminated, the Arrow Lakes Reservoir and other Canadian reservoirs would be operated solely for Canadian interests and would not be operated to provide downstream regulation for U.S. projects. Under these conditions, Grand Coulee would likely have to take on most of the responsibility for regulating the flows in the Columbia River in the U.S, especially for flood control. Deeper and more frequent drafts of Grand Coulee reservoir would be expected, with associated risks to refill and impacts on capacity and energy outputs as well as recreation, irrigation, and fisheries interests. Furthermore, the information on Canadian operations that the U.S. could rely on for structuring its planned operations would be minimal as committing in advance to any set of operations would reduce Canadian flexibility without providing any Canadian gains. Except for emergency situations, little advance information on planned operations would likely be made available and communication would be similar to that between Seattle City Light's Boundary Dam in the U.S. and BC Hydro's Seven Mile Dam immediately downstream in Canada on the Pend d'Oreille River. #### Seasonal cold snaps As discussed in section 2.2.2, seasonal cold snaps typically occur once or twice a winter, sometimes for extended periods. These cold snaps increase electrical demand and at the same time reduce the generation resources available to meet the load. As long as the Treaty continues, the reduction in U.S. inflows (and generation) is countered by a corresponding increase in Treaty storage releases needed to maintain the U.S. Pacific Northwest firm energy load carrying capability. The assured release of water under the Treaty in the winter provides reliability in the Pacific Northwest. For example, in comparing the Treaty operations to the BC Hydro reference case in the Treaty Terminate scenario¹⁶, the Treaty provides a 1.5 to 3.0 MAF draft of water during January/February of the lowest water years. This would provide approximately 1,500 to 3,000 GWh of additional U.S. generation during those months. In addition, the Non-Treaty Storage Agreement can and has been utilized to release more water from Canadian storage and increase U.S. generation during a cold snap. In the absence of the Treaty, both of these reliable water augmentation mechanisms would be lost. Power utilities in the region would need to purchase generation at a time when other regions may also be experiencing increased demand. Alternatively, U.S. utilities may need to build additional winter peaking capacity to ensure reliability. #### Seasonal and extended dry periods As described previously, the Treaty provides for proportional summer draft in long dry summers to maintain reliability for customers by drafting Canadian storage before Grand Coulee, whereby Grand Coulee Reservoir is able to stay at a higher elevation than it would if Canada operated in its own self-interest to maximize power production and provide additional benefits to recreation, navigation and other Canadian interests. These conditions may become more prevalent as climate change predictions indicate that the southern Columbia Basin is expected to become hotter and dryer over time with prolonged dry water sequences. In the U.S. Entity Iteration 1 studies for the Columbia River Treaty Review, U.S. generation was analyzed with continued Treaty coordination post-2024, and compared to U.S. generation that would result from flows derived from an assumed Canadian operation with "optimal" Canadian power generation. In 20% of the years with the lowest water conditions, the U.S. losses in generation from uncoordinated operations was more than 1,000 aMW or 1,460 GWh over the months of August and September. This would be greater in an extreme dry year. Such a loss may result in the need to build new generation or force purchase of electricity from the wholesale market at the prevailing rate. Market prices for power in the Pacific Northwest tend to be higher in dry periods due to greatly-reduced hydro power generation. Dry periods can extend over multiple years. When there are a number of low water years in a row, the Canadian Treaty storage does not refill each year. Even under these conditions, the Treaty requires additional water to be released from Canadian storage to supplement the low flows in the U.S. in order to maintain the $^{^{16}}$ BC Hydro, Columbia River Treaty Review Technical Studies [Draft], March 11, 2013 system's ability to meet the firm load. In these drought years, Canadian out-flow is greater than the in-flow and up to 15.5 MAF of the Treaty storage and up to 5 MAF of the Non-Treaty storage ¹⁷ can be used as long as the Treaty continues. If the Treaty was terminated, the contrary might occur in that Canadian outflow may not be greater than Canadian inflow in dry years as water may be retained in Canada to enhance Canadian refill and other Canadian interests. The U.S. relies on these water augmentation mechanisms built into the Treaty to supplement flows in dry years. The load–resource balance that BPA publishes¹⁸, which is used by the entire U.S. Pacific Northwest region for planning, assumes this supplemental flow from Canada in dry years. In addition, due to fisheries constraints, the U.S. power system is now operated to a one year critical period based on 1937, which was the driest historical year. U.S. reservoirs have to refill in order to have enough water to be used for spring and summer fisheries flows. As a result, U.S. reservoirs are no longer used to shift water from a wetter year to a drier year. Canadian storage under the Treaty and NTSA are the only mechanisms the U.S. has to supplement flows in multi-year droughts. Without these assured mechanisms, the U.S. utilities would likely re-examine their reliability planning criteria and the Pacific Northwest system firm energy load carrying capability. Additional resources may be required to meet the Pacific Northwest utilities firm load commitments. Climate change predictions may exacerbate seasonal and extended dry climatic conditions as the downstream half of the Columbia Basin is anticipated to become drier and hotter over time and prolonged dry water conditions could increase in frequency. #### Wind integration and over supply in the U.S. Pacific Northwest Over the last five years, installed wind generation capacity has increased to over 4,000 MW causing over supply to become a chronic problem during the freshet period (April through July). Over supply occurs when the minimum hydroelectric generation combined with wind generation exceeds the demand. In this situation generation must be curtailed (water spilled or wind turbines idled) to maintain the stability of the power
grid. There are, however, limits to how much water can be spilled past the generators at U.S. dams on the Columbia because spilling water raises the total dissolved gas in the water to levels that can be damaging to fish. BPA has an Overgeneration Management Protocol to turn down wind generation in over supply situations. The costs are currently shared 50/50 between BPA and the wind power producers. For 2013, if water conditions are average, the oversupply is estimated to be 283 MW-months with displacement costs of \$10 million¹⁹. When there is an oversupply of electricity the market prices can become negative, and producers actually pay buyers to absorb the excess energy. In 2012 the light load hour prices were negative for 60% of the time April through July. The NTSA is being used to reduce the amount of surplus generation. In 2012, 2.8 MAF of water was stored under the NTSA from April through July. If this water had not been stored during the spring months, another 4,000 MW-months (approximately \$40-60 million) would have been generated (or spilled) at ¹⁷ The current expected use of non-Treaty Storage is not to support Firm Energy Load Carrying Capability in the U.S. as the US Entity uses the agreement to support fisheries operations and shape energy into higher value periods. However, under extreme conditions it is possible that the U.S. priorities change, and the Non-Treaty storage provides some backup or insurance. ¹⁸ Bonneville Power Administration, Pacific Northwest Loads and Resources Study (2012 White Book) https://www.bpa.gov/power/pgp/planning.shtml www.nwcouncil.org/media/5729978/3.pdf the U.S. dams, causing additional wind displacement and/or additional fisheries issues related to total dissolved gas. The NTSA and the Treaty both provide mechanisms for reducing the amount of wind displacement required. #### 3.4 Ecosystem As noted in section 2.2.3, coordination of reservoir operations and subsequent flows under the Treaty have expanded coordinated operations beyond power production and flood control to include ecosystem objectives. This is accomplished through a number of actions, including proportional drafting during annual low flow periods to provide extra flows during late summer, Supplementary Operating Agreements that provide higher flows during the freshet to assist with fish recovery, and dry year strategies as part of the NTSA. During the dry summer period, coastal and interior rivers that are either rainfall driven or have little snow accumulation tend to dry up and may reach their annual low flows in August or September. Flows on the Columbia River main stem are primarily maintained from the snow and glacier melt at high elevations in Canada and parts of the U.S. basin. In low snow pack years, the natural inflow in late summer is considerably less. For example, at McNary dam, where the summer flow objective for fisheries is 200,000 cfs, the unregulated flow drops below this level on average by the end of July and reaches 100,000 cfs by the third week in August. If the Treaty is terminated, Canadian reservoirs would be managed for Canadian interests: domestic fish operations could have priority in some months; recreation interests could take priority in summer; bird and wildlife or cultural heritage could take priority in other times of the year. Different combinations of priorities in Canada could change under different water conditions and also change over time to adapt to changing climate conditions. A degree of balance between different domestic values and interests was achieved during the Columbia River Water Use Planning process in B.C. However, during that process the existence of the Treaty constrained the flexibility of operations to meet some important domestic objectives. It is not possible at this time to predict what may result from a future Water Use Plan that would not be constrained by Treaty requirements. If notice of Treaty termination is given, changes to the current operating regime would be explored in the next Water Use Plan review scheduled for 2021. Treaty termination would likely have a significant impact to U.S. fisheries operations under low flow conditions which could be exacerbated by climate change in the Basin. There are a number of significant benefits to U.S. fisheries that would be lost by Treaty termination. These include: • Proportional Drafting: Due to power provisions of the Treaty the coordinated system moves into proportional draft in low water conditions. The Canadian reservoirs draft to maximize electrical generation in the system, which in turn provides water for U.S. fisheries operations, especially in dry years and dry summers. Cold water flows from Canada in late summer support fish survival and spawning, especially during low flow years. While the Canadian reservoirs need to comply with proportional draft requirements under the Treaty, U.S. operations have the flexibility to manage flows for a variety of competing interests once the water crosses the border. - Non-Power Uses Agreement: The U.S. relies on this water augmentation mechanism to supplement flows for fisheries purposes. Currently, 1 MAF of flow augmentation under the agreement moves water from January/February to June/July to more closely replicate portions of the natural hydrograph. US Entity studies have modelled ecosystem components that would require further coordination with Canada. Both present and potential future ecosystem enhancements would require similar or greater coordination that could only occur under the Treaty. - <u>Non-Treaty Storage Agreement:</u> The NTSA is particularly valuable for U.S. salmon interests as the dry year release provision guarantees a right to the U.S. to release 0.5 MAF for use in May/June to support salmon migration in the lower Columbia River during the driest 20% of runoff years. It should be noted that the U.S. Entity analysis to date has not included the impacts from the loss of coordination under the NTSA, provisions of which would not continue under Treaty termination. In addition, U.S. fisheries may be significantly impacted by the current default post-2024 flood control operation, which will change the operation of all U.S. reservoirs. As explained in section 3.1.1, Called Upon Flood Control will require U.S. reservoirs to be drafted deeper more frequently, which would likely affect a range of ecosystem and other values. Currently, in the spring, the U.S. operates many of its reservoirs to the upper flood control level to provide more water in spring and summer for fisheries. With the requirement starting in 2024 for the U.S. to first make effective use of its reservoirs for flood control, more water would be discharged in winter to draft the reservoirs deeper than is current practice and therefore having less water to release in the spring. This would increase the risk of reservoirs not being able to refill, and subsequently result in less water available for fisheries in the summer. If the Treaty continues British Columbia is open to discussing incremental flood risk management arrangements that could avoid these impacts. It is useful to note that BPA's investments in fisheries recovery are many times higher than the value of the Canadian Entitlement under the Treaty. On average, BPA alone spends approximately \$700 million per year on fish and wildlife enhancements in the Basin. Of those total expenditures, an annual average of \$180 million was as a result of power losses by reregulating of power flows for fish. These are only some of the investments being made in ecosystem mitigation and restoration as other U.S. agencies, Tribes, power utilities, and non-profits are also dedicating significant resources to enhance environmental values. It may not be cost effective for the U.S. to pursue the reduction or elimination of the Canadian Entitlement payments if the resulting uncertain river flows and lack of coordination during low flow periods undermine the more costly investments in fish survival. #### 3.5 Water Supply During the dry summer period, coastal and interior rivers that are either rainfall driven or have little snow accumulation tend to dry up and may reach their annual low flows in July to September. Throughout these months there is heightened competition in the U.S. for limited water resources. Future decisions regarding the Treaty may significantly affect water supply to a range of stakeholders in downstream states. The most significant potential causes of change are the effective use of U.S. reservoirs for flood control and the loss of flow augmentation and proportional draft. As explained in section 3.1.1 the change in the flood control regime in 2024 to Called Upon Flood Control will require the U.S. to make effective use of U.S. reservoirs to minimize flood risk prior to calling upon Canada for assistance by providing additional storage. This means that U.S. reservoirs will need to be drawn down deeper and more frequently than they are currently because reliance on planned Canadian reservoir space will no longer be possible. Furthermore, as risks of changing or inaccurate inflow predictions transfer from Canadian reservoirs to U.S. reservoirs, corresponding risk of reservoirs not achieving refill is increased. Consequently, predictability in the availability of storage water for water users would be decreased, and for irrigators, pumping costs may increase with lower reservoir levels. B.C. maintains that the Called Upon Flood Control regime is a step backwards that does not serve either country well and is open to discussing mutually beneficial arrangements. Treaty termination would produce negative consequences to U.S. water supply during low flow periods and years. Previous sections on post-2024 power production and ecosystems describe mechanisms under the Treaty and the NTSA that augment flows during seasonal low flow periods and during the 20% lowest flow years. These supplemental flows would no longer be
available if coordination under the Treaty is discontinued. In short, without the cooperation set out in the Treaty between the two countries, reservoir levels and flows will likely be significantly changed from their current conditions. Climate change predictions of lower U.S. Columbia inflows and hotter, drier summers will only increase the need for collaboration. The impacts on water supply in the U.S. may be significant. #### 3.6 Navigation The Columbia River is an important commercial waterway for the transportation of all types of goods and commodities from the region to domestic and international markets. Four main stem dams and four lower Snake River dams also contain navigation locks to allow ship and barge passage from the ocean as far as Lewiston, Idaho. The Columbia River has over 790 kilometers (485 miles) of navigable river and serves 36 ports and carries approximately 40% of all U.S. wheat. Over 35 million tons of cargo each year worth approximately \$12 billion annually are exported and imported along the River. Suppliers, traders and exporters all rely on low cost and dependable shipping conditions to be competitive on the world market. While Columbia River elevations experience seasonal adjustments which are anticipated, prolonged low or high water conditions may impact the safety and cost of navigation and port operations. In recent years, \$50 million to \$200 million has been spent annually on maintaining sufficient navigation channel depth, facilitating further port expansion, and supporting economic development.²⁰ Changes that will be occurring because of the Treaty may significantly affect navigation and related interests. After 2024, the flood control operational regime will change from a predictable assured Flood Control operation to the ad-hoc Called Upon Flood Control that will increase the frequency of higher flows at The Dalles. Currently, Columbia Basin flood risk is managed collaboratively between both countries to reduce flood flows. ²⁰ Port of Vancouver letter to U.S. Entity February 12, 2013 Under the ad-hoc Called Upon Flood Control, forecasted Columbia River flows at The Dalles of 600 kcfs are needed before Canadian reservoirs can be called on to provide additional storage. This will increase the frequency of higher flows and could affect navigation and port operations, increasing shipping times and/or affecting docking operations. Higher flows may also increase the rate of erosion and sedimentation, affecting channel depths. There are unresolved differences between the Canadian and U.S. Entities on the interpretation of Treaty requirements after 2024; however it is clear that a change to Called Upon Flood Control is a significant step back from the current Assured Flood Control regime. B.C. is open to discussing more effective flood risk management arrangements that could benefit both countries and prevent these adverse impacts. Treaty coordination of water flows is especially beneficial to navigation in dry seasons and years. Under the Treaty, during low water conditions in the summer, water is released from Canadian reservoirs in order to optimize power on the entire system. If the Treaty is terminated, Canadian reservoirs would be managed purely for Canadian domestic interests and the proportional drafting, where water is released from Canadian reservoirs first, would no longer occur, meaning lower flows crossing the border. Similarly, the NTSA augments flows to the U.S. in the driest 20% of years. This agreement is linked to the Treaty and would expire if the Treaty is terminated. In both low flow season and dry years, ceasing Canadian flow augmentation could impact available channel draft, disrupt transport and raise the risk of grounding. #### 4 BENEFITS OF THE TREATY AND COORDINATED FLOOD CONTROL #### 4.1 Benefits to the U.S. The preceding chapters have outlined the Province of British Columbia's perspective on the benefits and risks to the U.S. if the Treaty is terminated as compared to continued coordination. Coordination with Canada has been shown to provide certainty for power planning for BPA, the Mid-C public utility districts and other power generators that provide the reliability required in meeting the electricity needs of power customers. During cold, dark winter periods when energy for heating and lighting is critical, or during the dry summer months when power production drops due to low river flows, supplementary water releases from Canada under the Treaty reduce the risk of curtailing load. In 1 in 5 years when the Basin is driest, the NTSA dry year strategy provides incremental flows to meet summer demand. Other interests and stakeholders benefit from the Treaty as well. U.S. fisheries programs, including legal requirements to meet salmon recovery objectives, have made billions of dollars in investments to support these goals. Treaty coordination is contributing to ecosystem recovery and enhancement plans through proportional drafts and flow augmentations from Canada during the spring freshets and low flow summer period and throughout dry years as well. At this stage no one can predict how terminating the Treaty may impact the sustainability of these fisheries values and protect previous and ongoing investments. However, collaboration between the two countries under the Treaty can only benefit ongoing efforts to address ecosystem needs in both countries. Water supply managers in several states are under pressure to meet a variety of stakeholder demands. Tradeoffs between interests, such as agriculture, recreation, domestic and industrial consumption, have become the norm and conflict around these choices will only increase as a result of expected climatic change. If the Treaty is terminated, flows in Canada during critical dry periods will be managed for Canadian domestic interests. However, if the Treaty continues the two countries can continue an ongoing dialogue, in the spirit of the Treaty's founding principles of creating and sharing benefits equally, to address new challenges that were not contemplated in the 1960as when the Treaty was signed. The Treaty has benefited U.S. communities by minimizing significant floods through planned coordinated operations, saving billions of dollars in flood damage in the U.S. The default change in flood control regime in 2024 prescribed by the Treaty whether it is terminated or not will likely impact all of the interests considered in this paper. Navigation, and the domestic and international commerce it supports, would be affected by higher flood flows that could disrupt marine traffic throughout the system, and would need to respond to infilling and shoaling at significant additional costs. The use of U.S. storage that would see reservoirs drafted deeper and more frequently with more refill failures could affect all the interests discussed earlier: fisheries, agriculture, navigation, recreation water supply, and power production. The Province believes the current level of flood control can best be re-negotiated from within the structure of the current Treaty. While quantifying all of the benefits of the Treaty and the risks and losses if the Treaty is terminated is beyond the scope of this paper, it is clear that current social and environmental expectations extend far beyond just flood protection and power production. #### 4.2 Benefits to Canada British Columbia does not face the same water resource pressures as the U.S. BC has sufficient available reservoir storage to manage flows to protect communities from significant floods and there is ample water supply for agriculture, domestic consumption and industrial uses. B.C.'s ability to balance recreation, ecosystem and power production interests are only limited by the Treaty. Treaty constraints and requirements on Canadian reservoirs continue to impact environmental, social and economic values in British Columbia. While the U.S. Entity has the freedom and flexibility to manage Treaty flows south of the border for a variety of domestic interests, the Canadian Entity does not have that flexibility due to operations required under the Treaty. Citizens in the Canadian Columbia Basin continue to raise the issue of imbalance between historic and ongoing impacts of the Treaty facilities and their operations and the share of benefits to the Province of British Columbia. The only benefit to Canada from the Treaty is through the return of the Canadian Entitlement. The Canadian Entitlement is an estimated calculation of half of the potential increase in power production in the U.S. as a result of coordination under the Treaty. The Canadian Entitlement is returned to B.C. in the form of energy at the border. The revenue from the sale of the energy on the market becomes part of the general revenue to the Province. While historically annual revenues from the sale of the Canadian Entitlement have been approximately \$200 million on average, current market prices have been depressed in recent years meaning that the Canadian Entitlement has been worth \$100-150 million per year. The size of the Canadian Entitlement is forecasted to decrease over time. While the U.S. has chosen to trade-off some of its potential downstream power benefits from the Treaty for more valuable benefits, it is British Columbia's view that, given the benefits and the avoidance of losses and risks described throughout this paper, the U.S. benefits more from the Treaty than does Canada. The Province of British Columbia is of the view that Canada should not bear the financial burden of the choices that the U.S. has made to regulate water for other purposes beyond what was initially intended under the Treaty. #### 5 CONCLUSION There appears to be a misconception by residents on both sides of the border that the Treaty can be terminated and easily renegotiated for more benefits to Canada, or more benefits to the U. S., depending on which side of the border one lives. The original Treaty took twenty
years to negotiate during a simpler time when fewer values were considered and with no consultation. Today's world is much more complex than it was in the 1960's, government processes are more daunting, and it is unlikely that an entirely new Treaty could be developed. B.C. does not believe that a series of transboundary commercial agreements to replace the Treaty would be workable or desirable on such a large scale. The Treaty, however, provides for considerable flexibility and changes can be made at any time if both countries agree. Given this, British Columbia's position is that if the two countries cannot agree on changes within the Treaty framework, there is almost no hope that an entirely new Treaty could be negotiated. The Columbia River Treaty has worked well for both Canada and the U. S. and has adapted to changing values over time. Citizens and stakeholders in both countries need to be fully informed on all the future costs, risks and benefits of alternatives in each country when seriously considering the future of the Treaty. # COLUMBIA RIVER NON-TREATY STORAGE AGREEMENT # executed by the # BONNEVILLE POWER ADMINISTRATION #### and # BRITISH COLUMBIA HYDRO AND POWER AUTHORITY #### **Table of Contents** | | Table of Contents | | |------------|--|------| | Section | | Page | | 1. | Term | | | 2. | Definitions | . 3 | | 3. | Establishment and Availability of Columbia River Non-Treaty | | | | Accounts | | | 4. | Water Transactions | | | 5. | Displacement of Active Account Balances | . 8 | | 6. | Water Transaction Accounting, Energy Accounting, and Energy | | | | Deliveries | . 9 | | 7. | BPA Head Loss Payments | . 12 | | 8. | BCH Dry Period Provisions | . 12 | | 9. | BPA Dry Period Provisions | . 15 | | 10. | Energy Pricing | . 16 | | 11. | Scheduling and Delivery of Energy | . 17 | | 12. | Priority Use of Facilities | . 17 | | 13. | Forced Evacuation of Non-Treaty Accounts | . 18 | | 14. | Force Majeure | . 19 | | 15. | Coordination Responsibilities | . 20 | | 16. | Non-Treaty Operating Committee | . 20 | | 17. | Management of Credit Risk | . 20 | | 18. | Dispute Resolution | . 21 | | 19. | Indemnification | . 21 | | 20. | Mid-C Participants | . 21 | | 21. | Information Exchange and Confidentiality | . 21 | | 22. | General Provisions | . 22 | | 23. | Maintenance of Required Approvals | . 23 | | 24. | Expiration and Early Termination | . 24 | | 25. | Signatures | . 25 | | | Exhibit A Daily Conversion Factors (h/k) Calculation | | | | Exhibit B Energy Pricing | | | | Exhibit C Mica Head Loss Calculation | | | | Exhibit D Mica Plant Characteristics | | | | Exhibit E Potential Operational Limitations on NTSA Transactio | ns | | | Exhibit F Determination of Available Energy Balance | | Exhibit G Transaction Request Protocol and Energy Scheduling Guidelines Exhibit H Bridge Agreement Reconciliation This COLUMBIA RIVER NON-TREATY STORAGE AGREEMENT (Agreement) is executed by the BONNEVILLE POWER ADMINISTRATION (BPA) a departmental element of the United States, Department of Energy, and BRITISH COLUMBIA HYDRO AND POWER AUTHORITY (BCH) a Crown corporation of the Province of British Columbia, continued under the *Hydro and Power Authority Act*, R.S.B.C. 1996, c. 212, as amended. BPA and BCH are sometimes referred to individually as "Party" and collectively as "Parties." #### RECITALS Whereas BCH is engaged in the sale and delivery of electric power and energy to customers in British Columbia and is the owner of an electric generation, transmission and distribution system which is used by it to supply electric power and energy to such customers; and Whereas BPA is authorized, pursuant to United States (U.S.) law to dispose of electric power generated at various federal hydroelectric projects in the Pacific Northwest, or acquired from other resources, to construct and operate transmission facilities, to provide transmission and other services, and to enter into agreements to carry out such authority; and Whereas the Governments of the United States of America and Canada, on September 16, 1964, ratified the Treaty between Canada and the United States of America Relating to Cooperative Development of the Water Resources of the Columbia River Basin signed at Washington on January 17, 1961, and by an Exchange of Notes dated January 22, 1964, the two Governments agreed upon the terms of a Protocol with effect from the date of the exchange of instruments of ratification of the aforesaid Treaty (which Treaty and Protocol are hereinafter referred to as the "Treaty"); and Whereas BCH constructed Mica and Arrow dams (hereinafter referred to as "Mica" and "Arrow" respectively) pursuant to the Treaty providing approximately 7.0 million acre-feet of Treaty storage at Mica, and approximately 7.1 million acre-feet of Treaty storage at Arrow, and BCH is authorized to operate such storage; and Whereas BCH constructed additional non-Treaty storage at Mica, which has provided additional flexibility and other benefits to both Parties; and Whereas successive agreements executed between the Parties and relating to the initial filling of non-Treaty reservoirs and the use of Columbia River non-Treaty storage (BPA Contract No. DE-MS79-84BP90946 and DE-MS79-90BP92754) have expired and short-term, seasonal non-Treaty storage agreements have been reached between the Parties from 2006 through 2012; and 12PG-10002 Whereas nothing in this Agreement is intended to supersede or amend the terms and requirements of the Treaty nor diminish BCH's entitlement to determine the operation of its facilities, including its reservoirs; and Whereas the U.S. and Canadian Entities established under the Treaty have reviewed this Agreement and have, through a separate written agreement, concurred that operations under this Agreement will not adversely affect stream flow control in the Columbia River within Canada so as to reduce flood control and hydroelectric power benefits under the Treaty, pursuant to Article IV(5) of the Treaty; and Whereas BPA and BCH enter into this Agreement with the shared purpose of obtaining additional operational flexibility and power and non-power benefits through the coordination of flow operations; Now therefore the Parties agree as follows: #### 1. TERM This Agreement shall take effect upon the latest date of execution by both Parties. Subject to Sections 23 and 24, this Agreement shall expire at 2400 hours on September 15, 2024. #### 2. **DEFINITIONS** In this Agreement, the following words and terms shall have the meanings stated below, unless the context otherwise requires. Capitalized terms that are not listed below are defined within the section in which the term is used. Words in the singular include the plural and vice versa, as context requires. Where a value is quoted in both cubic kilometers (km³) and million acre-feet (MAF), or both cubic meters per second (m³/s) and thousand cubic feet per second (kcfs), the units of MAF and kcfs shall be used and shall be determinative for the purpose of making calculations under this Agreement. - (a) "Active Account" shall have the meaning as described in Section 3(a). - (b) "Available Energy Balance" means the value of energy deliveries a Party may request in accordance with Section 6(c) and determined as described in Exhibit F, Determination of Available Energy Balance. - (c) "BCH Critical Planning Period" means the period in the historical stream flow record during which the water available from reservoir releases plus the natural stream flow is capable of producing the least amount of hydroelectric power in meeting system load requirements. - (d) "BCH Dry Period Conditions" means the water conditions occurring when system unregulated inflow volume for the previous February through September are as low as, or lower than the highest February through September inflow volume occurring within the BCH Critical Planning Period, as determined through BC Hydro long term planning models. As of the Effective Date, this threshold system inflow volume is estimated at 90% of normal using the 1981 to 2010 period of record, which may be updated 12PG-10002 periodically by BC Hydro, for the February through September period. Average system unregulated inflows are documented in the official Water Supply Summary, published by BCH in October of each year and shared with Provincial government agencies. - (e) "BCH Dry Period Operation" shall have the meaning as described in Section 8(a). - (f) "BPA Dry Period Conditions" means water conditions in a year that are in the lowest 20th percentile based on the Northwest River Forecast Center's (NWRFC) volume runoff averages for their statistical period of record as defined in the 2010 Federal Columbia River Power System (FCRPS) Biological Opinion, or its successor or replacement document that captures such information, as determined in accordance with Section 9(a). - (g) "BPA Dry Period Operation" shall have the meaning as described in Section 9(b). - (h) "Bridge Agreement" means the Non Treaty Storage Short-Term Bridge Agreement, Contract No. 11PB-21385. - (i) "Delivery Point" means the Canada-U.S. border at British Columbia or such other delivery point as is mutually agreed to by the Parties. - (j) "Detailed Operating Plan" means the detailed hydroelectric operating plan prepared annually for the August through July period, in accordance with Article XIV of the Treaty. - (k) "Downstream Federal Hydro Projects" means the six federal hydroelectric generating facilities on the Columbia River in the United States: Grand Coulee, Chief Joseph, McNary, John Day, The Dalles and Bonneville. - (l) "Downstream Mid-C Hydro Projects" means the five non-federal Mid-Columbia (Mid-C) hydroelectric generating facilities on the Columbia River in the United States: Wells, Rock Island, Rocky Reach, Wanapum, and Priest Rapids. - (m) "Downstream U.S. Hydro Projects" means the Downstream
Federal Hydro Projects plus the Downstream Mid-C Hydro Projects. - (n) "Effective Date" means the date on which this Agreement takes effect as described in Section 1. - (o) "Energy Price" means the price per megawatt-hour (MWh) of energy in U.S. dollars as determined consistent with Exhibit B, Energy Pricing. - (p) "Expiration Date" means the date on which this Agreement expires as described in Section 1. 12PG-10002 4 - (q) "Federal h/k" means the daily average rate in megawatts (MW) per kcfs at which water can be or could have been converted into energy, including adjustments for spill, at the Downstream Federal Hydro Projects, as calculated in accordance with Exhibit A, Daily Conversion Factors (h/k) Calculation. - (r) "Head Loss Energy" means the energy associated with BPA's share of head losses on the BCH system, as calculated in accordance with Section 7. - (s) "Heavy Load Hours" or "HLH" shall have the meaning as defined in Exhibit B, Energy Pricing. - (t) "Initial Water Balance" shall have the meaning as described in Section 3(a)(2) and Section 3(b)(2) for the Active Accounts and Recallable Accounts, respectively. - (u) "Light Load Hours" or "LLH" shall have the meaning as defined in Exhibit B, Energy Pricing. - (v) "Mid-C Participant" means an owner and/or operator of any of the Downstream Mid-C Hydro Projects: Public Utility District No. 1 of Chelan County, Washington (Rock Island and Rocky Reach Projects); Public Utility District No. 1 of Douglas County, Washington (Wells Project); and Public Utility District No. 2 of Grant County, Washington (Wanapum and Priest Rapids) and other parties that receive a share of the output from one or more of the Downstream Mid-C Hydro Projects. - (w) "Recallable Account" shall have the meaning as described in Section 3(b). - (x) "Transaction Benefit Account" shall have the meaning as described in Section 6(b). - (y) "Transaction Request Protocol" means the procedures for making and responding to Transaction requests, as set out in Exhibit G, Transaction Request Protocol and Energy Scheduling Guidelines. - (z) "Treaty Storage Regulation Study" means the coordinated system hydro regulation study prepared in accordance with the Detailed Operating Plan. - (aa) "Treaty Week" means the one-week period covered by the Weekly Treaty Storage Operation Agreement as defined in the Detailed Operating Plan, currently Saturday through Friday. - (bb) "U.S. h/k" means the daily average rate in MW per kcfs at which Non-Treaty Water Transactions can be or could have been converted into energy, including adjustments for spill, at the Downstream U.S. Hydro Projects, as calculated in accordance with Exhibit A, Daily Conversion Factors (h/k) Calculation. 12PG-10002 (cc) "Water Transaction" means the change in outflow at Arrow resulting from requests made under this Agreement with respect to the volume of water in the Parties' respective Active Accounts or Recallable Accounts. # 3. ESTABLISHMENT AND AVAILABILITY OF COLUMBIA RIVER NON-TREATY ACCOUNTS On the Effective Date, BCH shall establish and make available the following non-Treaty accounts totaling 6.17 km³ (5.0 MAF), in accordance with the following: #### (a) Active Accounts In accordance with and subject to the terms of this Agreement: - (1) BCH shall establish an Active Account for each Party with an account limit of 1.85 km³ (1.5 MAF), which shall remain available for use by the Party during the term of the Agreement. - (2) The Initial Water Balance in each Party's Active Account shall be set equal to 1.85 km³ (1.5 MAF). #### (b) Recallable Accounts In accordance with and subject to the terms of this Agreement: - (1) BCH shall establish a Recallable Account for each Party with an account limit of 1.233 km³ (1.0 MAF), which BC Hydro may make available for use by the Parties over the term of the Agreement. - (2) The Initial Water Balance in each Party's Recallable Account shall be set equal to 0.93 km³ (0.75 MAF). #### (c) Activation of Recallable Accounts At any time during the term of this Agreement, either Party may request access to its Recallable Account, and BCH may, in its sole discretion and with as much advance written notice as is reasonably practicable, declare some or all of the Recallable Accounts available for use by the Parties. Subject to Section 8, BCH Dry Period Provisions and Section 13, Forced Evacuation of Non-Treaty Accounts, if the Recallable Accounts are declared available by BCH, then: - (1) the Recallable Accounts shall be made available for use by the Parties in equal amounts, unless otherwise agreed; - (2) the terms and conditions of use of the Recallable Accounts shall be as agreed by the Parties; and - (3) either Party may request a Water Transaction from its Recallable Account in accordance with and subject to Section 4, Water Transactions. 12PG-10002 6 #### 4. WATER TRANSACTIONS Subject to Section 5, Displacement of Active Account Balances; Section 8, BCH Dry Period Provisions; Section 9, BPA Dry Period Provisions; and Section 13, Forced Evacuation of Non-Treaty Accounts, the terms and conditions of Water Transaction requests outlined in this Section 4 shall apply to all Water Transactions under this Agreement. #### (a) Water Transaction Requests In accordance with Exhibit G, Transaction Request Protocol and Energy Scheduling Guidelines, either Party may request a Water Transaction for the upcoming Treaty Week. In such request, the requesting Party shall: (1) designate a Water Transaction in respect of either its Active Account or, if declared available by BCH, the Party's Recallable Account and (2) specify if it is exercising its rights under Sections 5, 8 or 9. Subject to Section 13, a request shall not be required for forced evacuation. The priority of Water Transaction requests shall be in accordance with Section 12. #### (b) Account Limits A Party shall not request a Water Transaction that would: (1) reduce the balance of its Active Account or Recallable Account to less than zero, or (2) increase the balance of its Recallable Account to more than 1.233 km³ (1.0 MAF). A Party may request a Water Transaction that would increase the balance of its Active Account to more than 1.85 km³ (1.5 MAF); provided, however, that the total balance of the Active Accounts shall not exceed 3.70 km³ (3.0 MAF). If the Parties agree to such a Water Transaction, then the terms and conditions of Section 5, Displacement of Active Account Balances, shall apply. #### (c) Declining a Water Transaction Request Subject to Section 5, Displacement of Active Account Balances, Section 8, BCH Dry Period Provisions and Section 9, BPA Dry Period Provisions, either Party has the right to decline a Water Transaction request made by the other Party. However, each Party shall make reasonable efforts to accommodate Water Transactions requested under this Section 4 by the other Party. The Parties recognize there are numerous constraints, including power and non-power requirements, upon system operations that may limit the ability of a Party to accommodate a Water Transaction request by the other Party. To promote a better understanding of each Party's non-power requirements and the resulting impacts on coordinating operations under this Agreement, a non-exhaustive listing of typical non-power requirements that the Parties recognize may limit operational flexibility is set out in Exhibit E, Potential Operational Limitations on NTSA Transactions. #### (d) Changes to Arrow Outflows Water Transactions under this Agreement for each Treaty Week shall be implemented by BCH by adjusting the outflow at Arrow to achieve a uniform flow rate for these Water Transactions over the applicable Treaty Week that corresponds to the sum of the Parties' Water Transactions, unless the Parties agree to a mid-week change under Section 4(e). #### (e) Mid-week Changes Either Party may request a mid-week Water Transaction, if no request has been made for that week, or a mid-week modification to an existing Water Transaction (each, a Mid-Week Change) in situations including, but not limited to the following: - (1) by Monday of the Treaty Week, if the weekly average Federal h/k estimate has changed from the estimate made at the time of the Water Transaction request by fifteen percent (15 %) or more, higher or lower; or - (2) the Treaty Storage Regulation Study changes such that it will result in a significant change to Treaty outflows at Arrow from what was expected and planned for by a Party at the time of making its Water Transaction request. A Party's request for a Mid-Week Change as a result of (1) or (2) above shall not be unreasonably denied by the other Party. All other Mid-Week Changes shall be made by mutual agreement of the Parties. #### (f) Water Transaction Accounting Accounting of Water Transactions made pursuant to this Section 4 shall be completed in accordance with Section 6, Water Transaction Accounting, Energy Accounting, and Energy Deliveries, except that accounting for Water Transactions made pursuant to Section 8, BCH Dry Period Provisions, shall be completed in accordance with Section 8. #### 5. DISPLACEMENT OF ACTIVE ACCOUNT BALANCES If the Parties agree to a Water Transaction that would increase a Party's Active Account balance to more than 1.85 km³ (1.5 MAF), then any volume of water in the Active Account of that Party (Overfilled Party) exceeding 1.85 km³ (1.5 MAF) shall be subject to displacement by the other Party (Displacing Party) in accordance with the following: - (a) A Water Transaction storage request to displace an Active Account balance pursuant to this Section 5 shall be made in accordance with Section 4(a). Such storage request shall be limited by the lesser of: - (1) the Overfilled Party's Active Account balance in excess of 1.85 km³ (1.5 MAF) expressed as a uniform flow rate over the applicable Treaty Week (in kcfs); or - (2) the volume of water required to achieve a uniform flow rate of 5.0 kcfs over the applicable Treaty
Week. 12PG-10002 8 The Overfilled Party shall not deny the Displacing Party's Water Transaction request. - (b) The Overfilled Party shall be deemed to have requested a corresponding Water Transaction release equal to the Water Transaction by the Displacing Party under Section 5(a). The net change in Arrow outflows resulting from such corresponding Water Transactions shall be zero. - (c) Accounting of displacement Water Transactions made pursuant to this Section 5, and any associated energy accounting, shall be completed in accordance with Section 6. # 6. WATER TRANSACTION ACCOUNTING, ENERGY ACCOUNTING, AND ENERGY DELIVERIES #### (a) General Accounting and Verification - (1) BPA and BCH shall each be responsible for maintaining a daily accounting to include, but not be limited to, the following: Water Transactions; account balances for BPA and BCH Active and Recallable Accounts; Federal h/k or U.S. h/k as applicable; Energy Prices; energy values associated with BCH Water Transactions; BPA Head Loss Payments; account balances for the Transaction Benefit Account; energy deliveries; and any financial payments made pursuant to this Agreement by either Party to the other. - (2) As of the Effective Date, all account balances under the Bridge Agreement shall be transferred to account balances under this Agreement, in accordance with Exhibit H, Bridge Agreement Reconciliation. - (3) BPA and BCH shall verify and reconcile Water Transactions and energy accounting on a monthly basis. - (4) BCH may request information from BPA to verify the after-the-fact accuracy of the Federal h/k or, if applicable, U.S. h/k applied to a BCH Water Transaction, and BPA shall provide such information as soon as practicable following such request. #### (b) Transaction Benefit Account A Transaction Benefit Account shall be established and maintained under the Agreement by the Parties to track and account for the energy values associated with the transactions described below. A positive balance in the Transaction Benefit Account shall be deemed a value allocated to BCH, and a negative balance in the Transaction Benefit Account shall be deemed a value allocated to BPA. (1) Energy values associated with BCH Water Transactions shall be tracked and accounted for in the Transaction Benefit Account, except for BCH Water Transactions under Section 8, BCH Dry Period Provisions. - (2) There shall be no energy values associated with any BPA Water Transactions under this Agreement, except for energy values associated with head losses on the BCH system as described in Section 7, BPA Head Loss Payments, which shall be tracked and accounted for in the Transaction Benefit Account. - (3) The energy values associated with BCH Water Transactions in Section 6(b)(1) above shall be calculated as follows, on a daily basis: - (i) The energy associated with a BCH Water Transaction shall be calculated by multiplying the after-the-fact Federal h/k by the daily Water Transaction volume. BCH Water Transactions that reduce Arrow outflows shall be recorded as a negative volume and those that increase Arrow outflows shall be recorded as a positive volume. - (ii) The value of the energy in (i) above shall be calculated by multiplying the energy in MWh times the daily flat Energy Price for the day that the water is deemed to pass through the Downstream Federal Hydro Projects. The Parties shall assume a 1-day lag between BCH Water Transactions and the resulting change in generation on the Downstream Federal Hydro Projects. Therefore, the Parties shall use Federal h/k and Energy Prices that are lagged by one day from the day of the BCH Water Transaction to calculate energy and energy value in (i) and (ii) above. #### (c) Energy Deliveries Based on the Transaction Benefit Account Balance - (1) The Party with an Available Energy Balance in its favor, as determined in accordance with Exhibit F, may request energy deliveries from the other Party (Delivering Party) up to the value of the Available Energy Balance. Such requests shall be at a uniform hourly rate, up to 300 MW in Light Load Hours (LLH). - (2) The Delivering Party may not unreasonably deny an energy delivery request. It shall not be deemed unreasonable to deny the request if it is expected that the Energy Price for the applicable upcoming week will be less than or equal to zero, or if energy or capacity limitations would compromise the Delivering Party's ability to serve its load obligations. The Parties may mutually agree to alternate delivery schedules. - (3) Energy deliveries shall be scheduled pursuant to Section 11, Scheduling and Delivery of Energy and Exhibit G, Transaction Request Protocol and Energy Scheduling Guidelines. - (4) The value of the energy actually delivered shall be tracked and accounted for in the Transaction Benefit Account. Energy values will be calculated based on the Energy Price for the applicable time blocks, as described in Exhibit B, Energy Pricing, and delivered energy amounts. Energy deliveries from BPA to BCH shall be recorded in the Transaction Benefit Account as a negative energy value, and energy deliveries from BCH to BPA shall be recorded in the Transaction Benefit Account as a positive energy value. # (d) Settling the Transaction Benefit Account Balance, Billing and Payment As soon as practicable after each August 31, the Parties shall verify the Transaction Benefit Account balance for the year prior (September 1 through August 31). Unless otherwise agreed, a bill shall be issued on or about September 25 each year in the amount of the Transaction Account Balance, in U.S. dollars. If there is a negative account balance, BPA shall bill and BCH shall pay to BPA the amount of any negative Transaction Benefit Account balance, unless otherwise agreed by the Parties. If there is a positive account balance, BCH shall bill and BPA shall pay to BCH the amount of any positive Transaction Benefit Account balance, unless otherwise agreed by the Parties. All bills shall be issued by electronic submittal unless electronic submittal is not practical, in which case each Party shall transmit a summary to the other Party electronically and send the entire bill by mail. Payment of all bills shall be made by electronic funds transfer in accordance with instructions on the bill. Payment of all bills shall be made in full on or before the 20th day after the bill is issued. If the 20th day is a Saturday, Sunday, or holiday for the U.S. Federal Government or British Columbia, as applicable, the due date shall be the next business day. After the due date, either Party may assess a late payment charge equal to the higher of: - (1) the U.S. Prime Rate as listed in the Wall Street Journal, or equivalent successor or replacement publication, in the first issue published during the month in which payment was due plus four percent, divided by 365; or - (2) the U.S. Prime Rate times 1.5, divided by 365; applied each day to any unpaid balance. Each Party shall adjust the Transaction Benefit Account accordingly upon receipt of payment from the other Party. #### 7. BPA HEAD LOSS PAYMENTS Subject to Section 13, Forced Evacuation of Non-Treaty Accounts, if, at any time, the sum of BPA's Active and Recallable Account balances are less than 2.77 km³ (2.25 MAF), then BPA shall compensate BCH for Head Loss Energy, calculated on a daily basis. The energy values associated with head losses shall be calculated as follows: first, the Head Loss Energy shall be calculated as the daily average energy of the head losses in accordance with Exhibit C, Mica Head Loss Calculation; then, the daily average value of that Head Loss Energy shall be calculated as the product of the Head Loss Energy in MWh times the daily flat prices on the same day, based on the price index in accordance with Exhibit B, Energy Pricing. The energy value attributed to Head Loss Energy is a value allocated to BCH and shall be credited to the Transaction Benefit Account under Section 6(b)(2) unless Section 8, BCH Dry Period Provisions apply, in which case Head Loss Energy shall be delivered to BCH under Sections 8(e) and 8(f) and the value shall not be credited to the Transaction Benefit Account. #### 8. BCH DRY PERIOD PROVISIONS #### (a) BCH Dry Period Operation Request If BCH Dry Period Conditions occur, then BCH may request a BCH Dry Period Operation by written notice to BPA and shall supply BPA with data to support the determination of BCH Dry Period Conditions. #### (b) BCH Dry Period Operation Release Rights If BCH has requested a BCH Dry Period Operation, then BCH may request Water Transactions in the period of October through April to increase Arrow outflows, first from its Active Account up to the volume of water remaining in such account and then from its Recallable Account up to the volume of water remaining in such account. The amount of any such request shall not exceed the volume of water required to achieve a uniform flow rate of 56.6 m³/s (2 kcfs) over the applicable Treaty Week. If at the beginning of October and end of April a Treaty Week straddles two calendar months, then the Treaty Week shall be deemed to belong to the calendar month in which most of the days of the Treaty Week occur. BCH Dry Period Operation Water Transaction requests shall be made in accordance with Section 4(a). BPA shall make all reasonable efforts to accommodate such requests, which shall be implemented in accordance with Section 4(d). #### (c) BPA Option during a BCH Dry Period Operation When BCH requests a Water Transaction under Section 8(b) above, BPA may request a concurrent Water Transaction to increase Arrow outflows, first from its Active Account up to the volume of water remaining in such account and then from its Recallable Account up to the volume of water remaining in such account. The amount of any such request shall not exceed the amount of BCH's Dry Period Operation Water Transaction request. Any such BPA Water Transaction request shall be made in
accordance with Section 4(a). BCH shall make all reasonable efforts to accommodate such requests, which shall be implemented in accordance with Section 4(d). #### (d) Scheduling of Equivalent Water Return If BCH Dry Period Operation Water Transactions under Section 8(b) occur, then as soon as conditions reasonably permit, BCH shall request Water Transactions to return an equivalent amount of water, first to its Recallable Account, if applicable, and then to its Active Account. If BPA Water Transactions under Section 8(c) occur from BPA's Recallable Account, then as soon as conditions reasonably permit, BPA shall request Water Transactions to return an equivalent amount of water to its Recallable Account. All Water Transaction requests under this Section 8(d) shall be made in accordance with Section 4(a). The Parties shall make reasonable efforts to accommodate such requests, which shall be implemented in accordance with Section 4(d). The Parties may agree to Water Transactions under Section 4 in addition to those under this Section 8(d). #### (e) Accounting and Energy Considerations (f) BCH Water Transactions made under Sections 8(b) and 8(d) and the associated energy and energy values shall be tracked and accounted for under this Section 8 and not in the Transaction Benefit Account. At any time when BCH Dry Period Operation Water Transactions under Section 8(b) occur, regardless of whether any BPA Water Transactions under Section 8(c) occur, BPA shall deliver all Head Loss Energy to BCH under Section 8(f), and the energy value attributed to such Head Loss Energy shall not be credited to the Transaction Benefit Account. When a BCH Dry Period Operation Water Transaction under Section 8(b) occurs, BPA shall deliver to BCH an amount of energy equivalent to the sum of the energy that will result from such BCH Dry Period Operation Water Transaction and any Head Loss Energy. Energy amounts associated with Energy Deliveries to BCH under a BCH Dry Period Operation BCH Dry Period Operation Water Transactions under Section 8(b) shall be calculated by multiplying the estimated U.S. h/k by the Water Transaction volume on a daily basis and shall be adjusted for after-the-fact U.S. h/k in accordance with Section 8(h). Head Loss Energy shall be calculated in accordance with Section 7. In accordance with Section 11, Scheduling and Delivery of Energy and Exhibit G, Transaction Request Protocol and Energy Scheduling Guidelines, the energy to be delivered shall be estimated and prescheduled on a uniform hourly schedule for the upcoming week to the Delivery Point. The weekly period to be used for such energy deliveries shall be lagged one day from the Treaty Week in which the applicable BCH Dry Period Operation Water Transaction occurs. The Parties may mutually agree to alternate delivery schedules. #### (g) Energy Deliveries to BPA in Return When a BCH Water Transaction under Section 8(d) occurs, BCH shall deliver to BPA the amount of energy related to the water return and such energy shall be calculated by multiplying the estimated U.S. h/k by the Water Transaction volume on a daily basis, as adjusted for after-the-fact U.S. h/k in accordance with Section 8(h). In accordance with Section 11, Scheduling and Delivery of Energy and Exhibit G, Transaction Request Protocol and Energy Scheduling Guidelines, the energy to be delivered shall be estimated and prescheduled on a uniform hourly schedule for the upcoming week to the Delivery Point. The weekly period to be used for such energy deliveries shall be lagged one day from the Treaty Week in which the applicable BCH Water Transaction occurs. The Parties may mutually agree to alternate delivery schedules. #### (h) After-the-Fact Energy Adjustments The Parties shall establish and maintain an energy adjustment account to record differences in estimated versus actual U.S. h/k and resulting energy amounts under Sections 8(f) and 8(g), as well as any adjustments in the Head Loss Energy calculation under Section 8(f). Energy amounts as a result of such adjustments shall be delivered in a timely manner by BCH or BPA, as the case may be, in accordance with Section 11, Scheduling and Delivery of Energy and Exhibit G, Transaction Request Protocol and Energy Scheduling Guidelines. #### (i) Capacity Limitations The Party obligated to deliver energy under Sections 8(f) or 8(g) may suspend delivery if, on the preschedule day, the Party delivering the energy determines that capacity limitations may compromise its ability to serve its load obligations. The Party suspending delivery shall provide the other Party with as much advance notice as is reasonably practicable. If an energy delivery is suspended, then unless the Parties otherwise agree, the energy not delivered shall be rescheduled to either Light Load Hours in the same day or to 168 hours forward from the original hour of delivery, at the receiving Party's option. #### (j) Differences in Value of Energy Delivered to BCH - (1) Subject to 8(j)(2) below, the value of the energy delivered by one Party to the other under Section 8(f) and 8(g), as adjusted under Section 8(h), shall be calculated as the product of the energy delivered in MWh times the daily flat Energy Price on the day of delivery. - (2) If energy deliveries under Section 8(f) and 8(g), as adjusted under Section 8(h), are not flat in a day, then energy values will be calculated based on the Energy Price for the applicable HLH or LLH time blocks and delivered energy amounts. - (3) Upon completion the BCH Water Transactions made under Sections 8(b) and 8(d): if the value of energy delivered by BPA to BCH related to BCH Dry Period Operation Water Transactions (not including Head Loss Energy) exceeds the value of energy delivered by BCH to BPA, then such difference shall be subtracted from the Transaction Benefit Account balance; and if the value of energy delivered by BPA to BCH is less than the value of energy delivered by BCH to BPA, then no adjustment to the Transaction Benefit Account shall be made. #### (k) Transmission Costs Each Party shall be responsible for transmission on its system to and from the Delivery Point for energy deliveries under Sections 8(f) and 8(g). In consideration of such, BCH shall compensate BPA for all energy deliveries under 8(f) and 8(g) at the posted BPA hourly non-firm point-to-point transmission and ancillary services rates, or their successor rates. Losses shall be paid at the posted BPA Power Services transmission losses product rate, or its successor rate. If transmission is not available or transmission schedules are curtailed, then the energy deliveries shall be rescheduled as agreed by the Parties. #### 9. BPA DRY PERIOD PROVISIONS #### (a) Determination of BPA Dry Period Conditions The determination of BPA Dry Period Conditions shall be made using the NWRFC's early May water supply forecast for the April through August period as measured at The Dalles Dam. If the forecasting period changes from the current April through August period in a successor or replacement FCRPS Biological Opinion, then the period used for the NWRFC water supply forecast shall be adjusted to match. If requested by BPA prior to January 15, the NWRFC's water supply forecast for early April may be used for the year, rather than the early May forecast. All water supply forecasts used to determine BPA Dry Period Conditions water conditions will be consistent with those used in the Treaty Storage Regulation Study. #### (b) BPA Dry Period Operation Request Within seven days of the issuance of the NWRFC's water supply forecast in Section 9(a), if BPA Dry Period Conditions occur and if BPA did not request a BPA Dry Period Operation in the previous calendar year, then BPA may request a BPA Dry Period Operation by written notice to BCH and shall supply BCH with data to support the determination of BPA Dry Period Conditions. If BPA Dry Period Conditions occur and BPA requested a BPA Dry Period Operation in the previous calendar year, then BPA may request Water Transactions to increase Arrow outflows under Section 9(c), and BCH, in its sole discretion, shall determine whether it can accommodate such request. If BCH elects to accommodate such request, then a BPA Dry Period Operation will be deemed to have been requested by BPA for that calendar year. #### (c) BPA Dry Period Operation Release Rights If BPA has requested a BPA Dry Period Operation, then BPA may request Water Transactions in the period from the BPA Dry Period Operation request through to the end of June of that calendar year, or such other period agreed to by the Parties, to increase Arrow outflows. The amount of such requests shall not exceed the lesser of: (1) 0.62 km³ (0.5 MAF) and (2) the volume of water remaining in BPA's Active Account. By agreement of the Parties, the rate of release shall be determined and adjusted, as necessary, to provide a smooth delivery of the volume of water requested by BPA. If at the end of June a Treaty Week straddles June and July, then the Treaty Week shall be deemed to belong in June if most of the days of the Treaty Week occur in June. BPA Dry Period Operation Water Transaction requests shall be made in accordance with Section 4(a). BCH shall make all reasonable efforts to accommodate such requests, which shall be implemented in accordance with Section 4(d). #### (d) BCH Option during a BPA Dry Period Operation When BPA requests a Water Transaction under Section 9(c) above, BCH may release a portion of the requested volume of water from BCH's Active Account up to the lesser of: (1) 50% of the water requested by BPA and (2) the volume of water remaining in BCH's Active Account. The remaining balance of water requested by BPA shall be released from BPA's Active Account. #### (e) Accounting and Energy Considerations Energy accounting for Dry Period Operation Water Transactions under this Section 9 shall be in accordance with Section 6(b). #### 10. ENERGY PRICING Energy Prices shall
be determined consistent with Exhibit B. For purposes of determining energy values, Energy Prices will be limited to a minimum of \$0.00 for both Heavy Load Hour blocks and Light Load Hour blocks, unless otherwise agreed. Such limitation shall be in effect so long as BPA does not purchase or sell negative priced energy, except as may inadvertently occur when BPA makes price taker bids to purchase energy out of the California ISO (or other jurisdictions that may offer price taker bids) and the Locational Marginal Price (LMP) is negative at the point of purchase. In the event that BPA's negative pricing policy and/or practices are amended or replaced, BPA shall promptly notify BCH in writing, and the Parties shall amend this limitation accordingly. Such amendment will be based on the principle that the price should reflect the benefit BPA, in accordance with its policy, would receive for additional/decremental energy produced at the Downstream Federal Hydro Projects on a preschedule basis as a result of Water Transactions under this Agreement. In the event the Parties are unable to agree on amendments to this Agreement, the matter shall be resolved pursuant to Section 18, Dispute Resolution. #### 11. SCHEDULING AND DELIVERY OF ENERGY In accordance with Exhibit G, all energy deliveries under this Agreement shall be submitted on a preschedule basis, may be scheduled on non-firm transmission, and are subject to transmission availability. Schedules for delivery of energy under this Agreement shall be made at the Delivery Point. If transmission is not available or transmission schedules are curtailed, then the energy deliveries shall be rescheduled as agreed between the Parties. Where BPA is the Delivering Party under Section 6(c), BPA may limit the agreed-upon south to north energy delivery within any Light Load Hour to the difference between the prescheduled Canadian Entitlement delivery and the maximum Canadian Entitlement that can be scheduled on any hour. The Parties may mutually agree to alternate delivery schedules. Subject to Section 8(k), unless otherwise agreed each Party shall be responsible for acquiring and scheduling transmission and all transmission costs, including losses, on its system to or from the Delivery Point for energy deliveries under this Agreement. #### 12. PRIORITY USE OF FACILITIES #### (a) Priority of the Columbia River Treaty The use of Treaty storage space and the use of all other facilities at Mica Arrow, Duncan and Downstream U.S. Hydro Projects to fulfill the requirements of the Treaty shall receive priority over all uses provided for in this Agreement. #### (b) Priority of Requests under this Agreement When concurrent Water Transaction requests by BPA and BCH under this Agreement cannot be accommodated, BCH and BPA Dry Period Operation release rights under Sections 8 and 9 shall receive priority, after which the priority shall be as follows: if BPA and BCH Water Transaction requests are either both positive or both negative, and the combined request exceeds the available limited flexibility as specified by the Parties, then the total amount of the Water Transaction requests shall be reduced as necessary to conform to such limits, first by reducing the larger request by up to the amount it exceeds the smaller request and then by reducing each request by equal amounts. #### 13. FORCED EVACUATION OF NON-TREATY ACCOUNTS If water recorded in any non-Treaty account must be evacuated because: - (a) the storage space is no longer available; - (b) BCH has determined that a release is necessary for flood control, safety, protection of structures, or any other cause that BCH reasonably determines constitutes an emergency in British Columbia; or - (c) the U.S. Entity under the Treaty makes an on-call flood control operation request pursuant to the Treaty; then BCH shall give notice to BPA by any means practicable and confirm such notice in writing as soon as reasonably practicable, and shall have the right to initiate the release of water without the consent of BPA. In such event, each Recallable Account shall be reduced first to its Initial Water Balance, followed by reducing the Active Account balances, and finally reducing the remaining balance in the Recallable Accounts. For each category of account, as per the reduction priority above, the release will be first from the Party's account with the largest balance until the Parties' respective account balances are equal, and then such accounts shall be released concurrently on an equal basis. Releases of water and return of water under this Section 13 shall be considered BCH or BPA Water Transactions, as the case may be, under Section 6 for purposes of energy and energy value accounting, including the associated crediting and debiting of the Transaction Benefit Account. The obligation to return any of the water evacuated under this Section 13 shall be pursuant to procedures to be agreed upon by the Parties at such time. If the Parties cannot agree, then the matter shall be resolved pursuant to Section 18, Dispute Resolution. In the event of a forced evacuation under paragraphs (a) or (b) above, the calculation of BPA compensation for head losses on the BCH system under Section 7 shall be adjusted to use the maximum balance allowable for Active and Recallable Accounts in place of Initial Water Balances, until such time as the forced evacuation has been lifted and BPA has had reasonable opportunity to return the equivalent amount of water evacuated from its accounts. In the event of a forced evacuation under paragraph (c) above, the calculation of BPA compensation for head losses on the BCH system under Section 7 shall not be adjusted, unless BCH has been otherwise compensated under the Treaty or other agreements for the resulting head losses, in which case the calculation of BPA compensation for head losses on the BCH system under Section 7 shall be adjusted as described in the preceding paragraph. #### 14. FORCE MAJEURE - (a) A Party shall not be in breach of an obligation under this Agreement to the extent its failure to fulfill the obligation is due to a Force Majeure. "Force Majeure" means an event beyond the reasonable control, and without the fault or negligence, of the Party claiming the Force Majeure, that prevents that Party from performing its obligations under this Agreement and which that Party could not have avoided by the exercise of reasonable care, diligence and foresight. A Force Majeure may include, but is not limited to the following events: - (1) strikes, work stoppage, riot, civil or labor disturbance; and - (2) floods, earthquakes, other natural disasters, or terrorist acts; and - (3) final orders or injunctions issued by a court or regulatory body having subject matter jurisdiction which the Party claiming the Force Majeure, after diligent efforts, was unable to have stayed, suspended, or set aside pending review by a court having subject matter jurisdiction. - (b) Neither the unavailability of funds or financing, nor conditions of national or local economies or markets shall be considered a Force Majeure. The economic hardship of either Party shall not constitute a Force Majeure. Nothing contained in this provision shall be construed to require either Party to settle any strike or labor dispute in which it may be involved. - (c) If a Force Majeure prevents a Party from performing any of its obligations under this Agreement, such Party shall: - (1) immediately notify the other Party of such Force Majeure by any means practicable and confirm such notice in writing as soon as reasonably practicable; - (2) use commercially reasonable efforts to mitigate the effects of such Force Majeure, remedy its inability to perform, and resume full performance of its obligation hereunder as soon as reasonably practicable; - (3) keep the other Party apprised of such efforts on an ongoing basis; and - (4) provide written notice of the resumption of performance. - (d) A Force Majeure shall not relieve a Party from its obligations to restore its Active Account and Recallable Account to the Initial Water Balance for each account upon expiry or early termination of the Agreement and a Party shall be in breach of this Agreement if it fails to do so, notwithstanding a Force Majeure event. #### 15. COORDINATION RESPONSIBILITIES As necessary, BPA shall be responsible for coordinating any flow changes resulting from this Agreement with the U.S. Army Corps of Engineers, the Bureau of Reclamation, and affected Mid-C Participants. #### 16. NON-TREATY OPERATING COMMITTEE #### (a) Members and Meetings Within 30 days of the Effective Date, the Parties shall establish a Non-Treaty Operating Committee (the "NTOC") that shall include two members from each Party whom shall confer regularly and meet at least once a year to review and document various operating issues. #### (b) Purpose and Authority The NTOC shall provide a forum for discussing issues and problems that may arise during the implementation of this Agreement. The NTOC shall review and document various operating issues including, but not limited to: power scheduling procedures; methods of calculating the amounts or value of energy otherwise stored or released; operating plans; and planned maintenance of transmission and generating facilities used to implement this Agreement. The NTOC shall have the authority to amend any Exhibit to this Agreement by unanimous agreement, but shall have no authority, expressly or by course of conduct, to otherwise agree to amend the body of this Agreement. Decisions of the NTOC shall be by unanimous agreement. #### 17. MANAGEMENT OF CREDIT RISK - (a) For the purpose of managing credit risk, as of the Effective Date each Party shall have established a Transaction Benefit Account balance monitoring limit of \$40 million (positive or negative). If at any time the Transaction Benefit Account balance owed to a Party (First Party) exceeds the monitoring limit
established by that Party, then the First Party may, by written notice to the other Party (Second Party), require the Second Party to make an early payment to bring the Transaction Benefit Account balance to at least 20% below the monitoring limit, or to such other balance as may be agreed to by the Parties. The Second Party shall pay the amount of such early payment to the First Party. Issuance and payment of bills for early payment shall be made in accordance with Section 6(d). - (b) The Parties may agree to energy deliveries in lieu of early payment required by this Section 17. Any such energy deliveries shall be made in accordance with Section 6(c). - (c) At any time during the term of the Agreement, a Party may change its monitoring limit by written notice to the other Party, if: - (1) BPA is no longer a federal agency or instrumentality of the United States, if the other Party is BPA; or - (2) BCH is no longer a Crown Corporation of the Province of British Columbia, if the other Party is BCH. - (d) At any time during the term of the Agreement, either Party may change its monitoring limit with the consent of the other Party, such consent not to be unreasonably withheld. #### 18. DISPUTE RESOLUTION If a dispute arises out of or relates to this Agreement, or a breach thereof, and if the dispute cannot be settled by the NTOC or through other negotiation, then the Parties agree to first try in good faith to settle the dispute by mediation in accordance with the International Mediation Rules of the International Centre for Dispute Resolution (a division of the American Arbitration Association) before resorting to litigation or some other dispute resolution procedure. #### 19. INDEMNIFICATION Subject to Section 20, and with the exception of Sections 13(a) and 13(b), BPA agrees to indemnify BCH for payments of judgments or settlements made by BCH to any Mid-C Participant for actions BCH has taken pursuant to and consistent with the terms of this Agreement. Any such BCH settlements shall be subject to the prior approval of BPA. #### 20. MID-C PARTICIPANTS If BPA enters into a companion agreement with one or more Mid-C Participants, which do not stem from the Pacific Northwest Coordination Agreement, that would result in participation with respect to BCH Water Transactions as contemplated under this Agreement, then BPA shall notify BCH in writing as soon as practicable and the Parties shall amend this Agreement to account for: (1) the sharing of benefits among BPA and the applicable Mid-C Participants and (2) any other relevant provisions as determined by the Parties. If any such companion agreement is executed and if the Mid-C Participant has entered into an indemnification agreement with BCH in a form satisfactory to BCH, then the Parties shall deem that Section 19, Indemnification, does not apply with respect to that Mid-C Participant for so long as such indemnification agreement is in force and effect. #### 21. INFORMATION EXCHANGE AND CONFIDENTIALITY Upon request, each Party shall provide the other Party with any information that is necessary to administer this Agreement. Before one Party provides information to the other Party that is confidential, or is otherwise subject to a privilege or nondisclosure, each shall clearly designate such information as confidential. Each Party shall notify the other in writing as soon as practicable of any request received under applicable domestic law (e.g., the U.S. Freedom of Information Act (FOIA), British Columbia's Freedom of Information and Protection of Privacy Act (FOIPPA), or under any other federal, state, or provincial law or court or administrative order) for any confidential information. The Parties shall only release such confidential information to comply with applicable law or if required by any other federal law or court or administrative order. Each Party shall limit the use and dissemination of confidential information within their respective organizations to employees who need it for purposes of administering this Agreement. #### 22. GENERAL PROVISIONS #### (a) Entire Agreement and Order of Precedence This Agreement, including documents expressly incorporated by reference, constitutes the entire agreement between the Parties with respect to the subject matter of this Agreement. It supersedes all previous communications, representations, or contracts, either written or oral, which purport to describe or embody the subject matter of this Agreement. The body of this Agreement shall prevail over the exhibits to this Agreement in the event of a conflict. #### (b) Assignment Except as provided for in this Section or with the consent of the other Party, neither Party may assign its rights or obligations under the Agreement to a third party. Such consent shall not be unreasonably withheld. BCH may assign its obligations to receive and deliver any energy required to be delivered by BCH to BPA, or by BPA to BCH, under this Agreement to BCH's subsidiary, Powerex Corp., on written notice to BPA. #### (c) No Third-Party Beneficiaries This Agreement is made and entered into for the sole benefit of the Parties. The Parties intend that no other person or entity shall be a direct or indirect beneficiary of this Agreement, and nothing in this Agreement is intended to provide a basis for any action, either legal or equitable, by any person or class of persons against the United States, the Province of British Columbia, or their respective departments, agencies, crown corporations, instrumentalities, entities, officers, or employees. #### (d) Waivers No waiver of any provision or breach of this Agreement shall be effective unless such waiver is in writing and signed by the waiving Party, and any such waiver shall not be deemed a waiver of any other provision of this Agreement or of any other breach of this Agreement. #### (e) Applicable Law This Agreement shall not be construed to amend or modify the Treaty or the obligations of Canada or the United States under such. The Parties intend that this Agreement shall be an operational agreement governed by applicable domestic law and not international law. #### (f) Agency Policies Any reference in this Agreement to a BPA or BCH policy, including any revisions, does not constitute agreement of the other Party to such policy by execution of this Agreement, nor shall it be construed to be a waiver of the right of the other Party to seek judicial review of any such policy. #### (g) Amendments Except as expressly stated otherwise in this Agreement, no amendment of this Agreement shall be of any force or effect unless set forth in writing and signed by authorized representatives of each Party. #### (h) Survival All rights, obligations, liabilities and remedies of the Parties which accrued prior to the expiration or early termination of this Agreement, or which are by their nature continuing, including Sections 6(d), 19 and 24, and all other provisions necessary for the interpretation or enforcement of such provisions shall survive expiration or early termination of this Agreement. #### (i) Notices Any written notice required under this Agreement shall be provided to the other Party in one of the following ways: - (1) delivered in person; - (2) by a nationally recognized delivery service with proof of receipt; - (3) by United States or Canadian certified mail with return receipt requested; - (4) electronically by facsimile or e-mail; or - (5) by another method agreed to by the Parties. Notices are effective when received. #### 23. MAINTENANCE OF REQUIRED APPROVALS This Agreement is subject to BCH and BPA maintaining throughout the term of this Agreement specified in Section 1, all necessary and applicable regulatory and governmental licenses, permits or other approvals necessary to satisfy each Party's respective obligations under this Agreement. If any such license, permit or other approval expires or ceases to be effective for any reason, then this Agreement shall expire as of the same date and time as the expiration of that license, permit or other approval. The Party with the expiring license, permit or other approval shall act in good faith to notify in writing the other Party of the pending expiration as soon as possible. Upon such notice, or upon a mutually agreed later date, the provisions in Sections 24(b) and 24(c) concerning Water Transactions and final Transaction Benefit Account balance and payment shall apply. #### 24. EXPIRATION AND EARLY TERMINATION At least 24 months prior to the Expiration Date, or as otherwise mutually agreed by the Parties, the NTOC shall complete a plan to manage the balancing of accounts to achieve Initial Water Balances in a timely manner as required in Sections 24(a) and 24(b) below. #### (a) Expiration If this Agreement is not terminated early under Section 24(b), then each Party shall restore its Active Account and Recallable Account to the Initial Water Balances by 2400 hours on the Expiration Date. #### (b) Early Termination During the term of this Agreement, either Party may request early termination of the Agreement if: - (1) operating requirements or other restrictions imposed after the Effective Date materially diminishes the benefits received by a Party under the Agreement; or - (2) non-power requirements or objectives on a Party's system, such as water use planning and biological opinion requirements or objectives, that are materially negatively impacted by Water Transactions made under this Agreement. Any early termination request shall be given by written notice, not later than September 1 of any year with the intent to terminate at 2400 hours on December 31 two calendar years, or at least 28 months, after such notice was given. As soon as practicable after an early termination request is given, the Parties shall make a good faith attempt to agree upon a mutually acceptable alternative to termination. If, by January 15 of the following calendar year after a termination request has
been given, termination has been deemed unavoidable by Parties, the Party that gave notice of intent to terminate shall provide the other Party with a final written notice of termination, and the Expiration Date for this Agreement shall then be 2400 hours on the December 31 that is two calendar years after the calendar year in which the early termination request was given (i.e., the intended termination date identified in the early termination request). Unless otherwise agreed by the Parties, once the Party requesting termination has provided the other Party a final written notice of termination, all Water Transactions made under this Agreement shall be for the purpose of restoring the Active Accounts and Recallable Accounts to their Initial Water Balances, and each Party shall restore its Active Account and Recallable Account to the Initial Water Balances by the Expiration Date as described in this Section 24(b). #### (c) Issuance and Payment of Final Bill Within thirty (30) calendar days following the Expiration Date in Sections 24(a) or 24(b) above, the Parties shall verify the final Transaction Benefit Account balance. Within sixty (60) calendar days following such Expiration Date, a bill will be issued in the amount of the final Transaction Benefit Account balance and payment shall be made in accordance with Section 6(d). #### 25. SIGNATURES The Parties have caused this Agreement to be executed as of the date both Parties have signed this Agreement. | BRITISH COLUMBIA HYDRO AND POWER AUTHORITY | BONNEVILLE POWER
ADMINISTRATION | |--|-------------------------------------| | By Charle | By JW4 | | Name CHNIE (RE10 (Print/Type) | Name Stephen J. Wright (Print/Type) | | Title PLESIDENT - CED | Title Administrator/CEO | | Date ARIC 10 2012 | Date March 23, 2012 | # Exhibit A DAILY CONVERSION FACTORS (H/K) CALCULATION This exhibit describes the intent and basic procedures used to determine federal and U.S. daily conversion factors (Federal h/k and U.S. h/k) used in calculating the deemed change in generation on the Downstream Federal Hydro Projects or Downstream U.S. Hydro Projects resulting from Water Transactions under this Agreement. The calculated h/k's assume the water flows through each Downstream U.S. Hydro Project the day after each Water Transaction and include adjustments for limitations on project generating capability such as required spill, reserve requirements, and turbine generation limits. #### 1. CALCULATION #### (a) General - (1) The Federal h/k is the sum of the individual Downstream Federal Hydro Project h/k values. - (2) The U.S. h/k is the sum of individual Downstream U.S. Project h/k values. - (3) The daily h/k for each project is the daily average project generation divided by the daily average turbine flow, adjusted for operating limits including such factors as required spill, reserve requirements, and turbine generation limits. - (4) With the exception of Water Transactions under Section 5 of this Agreement, if both positive and negative Water Transactions occur concurrently, then the negative Water Transaction will be examined first based on the actual flow value, and the positive Water Transaction will be examined second based on the actual flow increased by the negative Water Transaction. - (5) If the federal system is spilling due to lack of load, then the Federal h/k is 0. In such instance, a change in flow from a Water Transaction would not result in a change in generation at the Downstream Federal Hydro Projects. #### (b) Determining Project h/k Values The ability of a project to increase or decrease generation as a result of Water Transactions includes consideration of project operating limits. If a project is operating near its turbine or generating limits, or there is project spill, then the calculated h/k will include the effects of those limitations. - (1) It is assumed all Water Transactions pass through Downstream U.S. Hydro Projects the day following the Water Transaction. - (2) Positive Water Transactions (outside fish passage season): - (i) If there is no spill, then all of the additional flow is assumed converted to generation and the project h/k is the daily average generation divided by the daily average turbine flow. - (ii) If a project spills due to lack of turbine capability, then all or a portion of the Water Transaction is spilled. The h/k is calculated as the average generation divided by the turbine flow multiplied by the percentage of the Water Transaction that could be generated. - (3) Negative Water Transactions (outside fish passage season): - (i) If there is any spill at a project due to lack of turbine capability, then the h/k for that project is 0 MW/kcfs. A negative Water Transaction reduces downstream flow. If flows had been higher the project would have spilled, thus there is no change in generation resulting from the Water Transaction. - (ii) If a project is operating at maximum turbine capability, then the h/k for that project is 0 MW/kcfs because there is no change in generation resulting from the Water Transaction. - (iii) If a project is operating near turbine capability then all or a portion of the Water Transaction may result in a generation change. The portion that affects generation is limited to the difference between the maximum turbine flow and the actual turbine flow. In this case, the project h/k is calculated as the average generation divided by the average turbine flow multiplied by the percentage of the Water Transaction that could have been generated. - (4) Fish Passage Season brings in additional project constraints including turbine generating limits and spill requirements that vary daily and hourly within the day. Determination of project h/k's during fish passage season will be based upon the proportion of any Water Transaction that was or could have been generated within the constraints. #### (c) Calculated Generation Change The generation change resulting from a Water Transaction is calculated as the Water Transaction multiplied by the sum of the project h/k's, including project operating limits. #### 2. PRIORITY To calculate h/k's when there are multiple Water Transactions under this and other agreements, the following priority of calculations will apply: (1) Transactions under the Columbia River Treaty; - (2)Water Transaction releases under Sections 8 and 9 of the Agreement; - (3)Other Water Transactions under this Agreement. #### 3. **EXAMPLES** The following examples are provided for illustration purposes. The calculations shown are for the Federal h/k, however the same principles would apply to the U.S. - (a) Example 1. Spill Due to Lack of Load (See 1(a)5 in this Exhibit) During a winter rain event, BPA and BCH each requested a -10 kcfs Water Transaction. Although federal projects had generating capacity, there was insufficient load and Grand Coulee spilled 30 kcfs all hours of one day. The federal h/k on that day was 0 MW/kcfs. - (b) Example 2. Positive Water Transaction That is Partially Spilled (See 1(b)(2)(ii) in this Exhibit) BPA requested a 5 kcfs Water Transaction and BCH requested a 10 kcfs Water Transaction. McNary was operating at maximum turbine capability and spilling 12 kcfs on a day-average basis. In this case a portion of the Water Transaction was spilled: 12 kcfs was spilled and 3 kcfs was generated. The h/k calculation is as follows: Daily average generation/daily average turbine flow = 5.4 MW/kcfs (typical value) Water Transaction generated: 3 kcfs Total Water Transaction: 15 kcfs h/k = 5.4 MW/kcfs * 3/15 = 1.08 MW/kcfs (c) · Example 3. Negative Water Transaction Limited by Turbine Capability (See 1(b)(3)(iii) in this Exhibit) BPA and BCH each requested a -5 kcfs Water Transaction, McNary's daily average turbine flow was 7 kcfs less than its maximum turbine capability. In this case the maximum amount of additional water that could have been generated is 7 kcfs. Daily average generation/daily average turbine flow = 5.4 MW/kcfs (typical value) Water Transaction that could have been generated: 7 kcfs Total Water Transaction: 10 kcfs h/k = 5.4 MW/kcfs * 7/10 = 3.78 MW/kcfs # (d) Example 4. Water Transactions with Percentage of Flow Spilled for Fish During fish passage season BPA and BCH each request a -7.5 kcfs Water Transaction. Due to fisheries requirements, McNary is required to spill 40% of its outflow and no other restrictions are limiting operations. Of the -15 kcfs of Water Transactions, 40% or 6 kcfs would have been spilled and 9 kcfs would have been generated. Daily average generation/daily average turbine flow = 5.4 MW/kcfs (typical value) Water Transaction that could have been generated: 9 kcfs Total Water Transaction: 15 kcfs h/k = 5.4 MW/kcfs * 9/15 = 3.24 MW/kcfs 12PG-10002 4 of 4 #### Exhibit B ENERGY PRICING #### 1. DETERMINATION OF ENERGY PRICES Subject to Section 10 of the Agreement and Sections 3 and 4 of this Exhibit B, prices for determining energy values under this Agreement shall be based on the daily pre-schedule index for valuing energy in the Mid-Columbia region as described in Section 2 below. #### 2. DAILY PRE-SCHEDULE INDEX The Parties agree to use the Intercontinental Exchange (ICE) indices as described in this Section 2. #### (a) Definition of Hourly Blocks "Heavy Load Hours" or "HLH" means hours ending (HE) 0700 through HE 2200 (16 hours per day) Pacific prevailing time, Monday through Saturday (6 days per week), excluding North American Electric Reliability Corporation (NERC) holidays. "Light Load Hours" or "LLH" means HE 0100 through HE 0600 and HE 2300 through HE 2400 Pacific prevailing time and all hours on Sundays and NERC holidays. #### (b) Use of Index For any given day over the term of this Agreement, the following ICE indices shall apply: - (1) for Heavy Load Hours, the Mid-C On-Peak Index, being the volume-weighted "average" price for Mid-C day ahead transactions in Heavy Load Hours in that day (or days where the
index covers more than one day), as published in the ICE Day Ahead Power Price Report; and - (2) for Light Load Hours, the Mid-C Off-Peak Index, being the volume-weighted "average" price for Mid-C day ahead transactions in Light Load Hours in that day (or days where the index covers more than one day), as published in the ICE Day Ahead Power Price Report. #### (c) Diurnal Energy Pricing Energy Prices under this Agreement shall be determined by: - (1) for Light Load Hour blocks in any day, the ICE Index for Light Load Hours in that day, - (2) for Heavy Load Hour blocks in any day, the ICE Index for Heavy Load Hours in that day, and (3) for daily flat energy blocks in any day, the weighted average of the ICE Index for Light Load Hours and for Heavy Load Hours in that day, based on the number of Light Load Hours and Heavy Load Hours in the day; provided that if any Heavy Load Hour or Light Load Hour block prices that make up the flat index are negative, such prices shall be adjusted in accordance with and subject to Section 10 of the Agreement. #### 3. UPDATE/REPLACEMENT INDEX By August 31 of any year, either Party may propose use of a different price index by providing notice in writing to the other Party of its view that the proposed index is the most generally accepted and used by market participants for daily pre-scheduled transactions in the Mid-Columbia region of the United States of America and that it is appropriate for the kind of product represented by deemed energy or delivered energy under this Agreement. In such case, the applicable index shall be an index that most closely applies to energy and energy deliveries under this Agreement (considering applicable factors and the intent of the Parties, including such factors as delivery point, firmness of electricity, time of day and general acceptance and use of such index by market participants), or such other index as the Parties may agree. If the Parties agree within 30 days after the foregoing notice is given, the index will be updated, including any changes to definitions of hourly energy blocks, and will be implemented beginning on October 1 of that year. If the Parties do not agree on a change to the index, then the prior agreed index shall remain in effect. #### 4. CHANGE IN HOURS USED FOR PRICING If the hours used for energy pricing by the ICE Index or any replacement thereof change from the hours used in the definitions of "Light Load Hours" and "Heavy Load Hours", the Parties will revise, to the extent reasonable, the definitions in this Agreement to take into account the hours used by the ICE Index or replacement, and will amend, to the extent reasonable, any other provision of this Agreement that uses the amended definitions, in order to reflect the original intent of this Agreement. If the Parties are unable to so agree within 30 days after the change in the hours used for pricing of energy, either Party may refer the matter to dispute resolution pursuant to Section 18 of the Agreement. ## Exhibit C MICA HEAD LOSS CALCULATION Two shadow contents, S₁ and S₂, shall be determined daily as follows: Storage contents S_1 and S_2 are expressed in ksfd and are defined by the following formulas: - $S_1 = M_{Base} + M_{TRT} + 2*ABi + 2*RBi$ = $4060.511 + M_{TRT} + 2268.750$ - $S_2 = M_{Base} + M_{TRT} + \min(RB_i + AB_i, RB_{BPA} + AB_{BPA}) + \min(RB_i + AB_i, RB_{BCH} + AB_{BCH})$ $= 4060.511 + M_{TRT} + \min(1134.375, RB_{BPA} + AB_{BPA}) + \min(1134.375, RB_{BCH} + AB_{BCH})$ #### WHERE: All balances are as of 2400 hours on the day for which the calculation is made and are in units of ksfd. M_{Base} is the Mica dead storage space and other storage space not impacted by this Agreement set equal to 4060.511 ksfd. RBi is the Recallable Account Initial Water Balance set to 378.125 ksfd each for BPA and BCH; RB_{BCH} and RB_{BPA} are equal to the balances in the BCH and BPA Recallable Accounts, respectively; M_{TRT} is equal to the Mica Treaty content pursuant to the Detailed Operating Plans including any Supplemental Operating Agreements in effect; AB_i is the Active Account Initial Water Balance set to 756.250 ksfd, each for BPA and BCH; AB_{BPA} is the balance in the BPA Active Account, subject to the adjustment below; and AB_{BCH} is the balance in the BCH Active Account, subject to the adjustment below. If AB_{BCH} exceeds AB_i , for the purpose of head loss calculations, an adjustment shall be made by deducting the difference ($AB_{BCH} - AB_i$), and adding such difference to AB_{BPA} . The purpose of this adjustment is to give BPA credit in the head loss calculation for the water, if any, which BCH has in their Active Account balance in excess of 1.5 MAF. Provided, however, that if either content S_1 or S_2 exceeds the maximum content at which Mica could be operated on such day, such content shall be set equal to the maximum content. Such maximum shall be the lowest of the following contents: (i) Mica's normal full content, which is 10121.100 ksfd; - (ii) Mica's maximum content at 2400 hours on such day as prescribed in the Columbia River Treaty Flood Control Operating Plan; or - (iii) Any other limits on maximum contents at Mica as determined by BCH. The amount of total head loss energy shall be determined daily according to the following formula: $$HLE_T = (HK_1 - HK_2) \times Q_{DOP} \times 24 \text{ hours}$$ #### WHERE: HLE_T is the total head loss in MWh; HK_1 is the water to energy conversion factor for Mica in MW/kcfs at content S_1 in ksfd as determined by linear interpolation from Column (3) of Exhibit D; HK_2 is the water to energy conversion factor for Mica in MW/kcfs at content S_2 as determined by linear interpolation from Column (3) of Exhibit D; and QDOP is the turbine discharge in kcfs at Mica on such day pursuant to the Detailed Operating Plan currently in effect including any supplemental Treaty operating agreements. If the amount of total head loss is not zero, the portion of such total allocated to BPA on such day shall be determined according to the following formula: $$\begin{aligned} & \text{HLE}_{T} & x & \text{max}(AB_{i} + RB_{i} - AB_{BPA} - RB_{BPA}, 0) \\ & \text{HLE}_{BPA} = \\ & & \text{max}(AB_{i} + RB_{i} - AB_{BPA} - RB_{BPA}, 0) + \text{max}(AB_{i} + RB_{i} - AB_{BCH} - RB_{BCH}, 0) \end{aligned}$$ #### WHERE: HLE_{BPA} is the amount of head loss energy allocated to BPA on such day; and all other terms are as defined above. Provided, however, if the resultant HLEBPA is negative, such amount shall be set to zero. Exhibit D MICA PLANT CHARACTERISTICS | (1) | (2) | (3) | |---------------------|-------------|-------------------| | Reservoir Elevation | Storage | Water-to-Energy | | (feet) | Content | Conversion Factor | | | (kcfs-days) | $(kW/cfs)^1$ | | | | | | 2475.0 | 10121.1 | 45.09 | | 2470.0 | 9854.8 | 44.77 | | 2465.0 | 9592.7 | 44.42 | | 2460.0 | 9334.8 | 44.06 | | 2455.0 | 9081.0 | 43.69 | | 2450.0 | 8831.4 | 43.31 | | 2445.0 | 8586.0 | 42.92 | | 2440.0 | 8344.8 | 42.53 | | 2435.0 | 8107.8 | 42.13 | | 2430.0 | 7874.9 | 41.74 | | 2425.0 | 7646.2 | 41.33 | | 2420.0 | 7421.6 | 40.93 | | 2415.0 | 7201.3 | 40.53 | | 2410.0 | 6985.1 | 40.13 | | 2405.0 | 6773.0 | 39.75 | | 2400.0 | 6565.1 | 39.36 | | 2395.0 | 6363.4 | 38.95 | | 2390.0 | 6170.1 | 38.55 | | 2385.0 | 5984.8 | 38.14 | | 2380.0 | 5806.7 | 37.73 | | 2375.0 | 5635.2 | 37.32 | | 2370.0 | 5469.9 | 36.91 | | 2365.0 | 5310.2 | 36.50 | | 2360.0 | 5155.7 | 36.09 | | 2355.0 | 5005.8 | 35.67 | | 2350.0 | 4860.1 | 35.26 | | 2345.0 | 4718.3 | 34.83 | | 2340.0 | 4580.0 | 34.41 | | 2335.0 | 4444.1 | 33.98 | | 2330.0 | 4310.2 | 4 33.54 | | 2325.0 | 4178.2 | 33.11 | | 2320.0 | 4048.1 | 32.67 | 12PG-10002 1 of 1 $^{^1}$ Tailwater elevation assumed to be 1880.7 feet based on 30,000 cfs Mica discharge with Revelstoke in-service. # Exhibit E POTENTIAL OPERATIONAL LIMITATIONS ON NTSA TRANSACTIONS | Month | Project | Issue | Limitations on Positive | Limitations on Negative Water | |----------|------------|---------------------------
--|--| | | • | | Water Transactions | Transactions | | January | Arrow | Whitefish flows | Transactions possible if Treaty | Transactions possible in many water | | | | Arrow | maintain Arrow outflows for | not adversely impact survival of spawned | | | | | whitefish spawning such that | whitefish eggs. | | | | | eggs broadcast in January can be protected through March. | | | | Priest | Vernita Bar flows | Unlikely to be limiting | Minimum flows needed to protect salmon | | | Rapids | | | redds at Vernita Bar (55-70 kcfs). Chum requirement typically more limiting. | | | Bonneville | Chum salmon
protection | Unlikely to be limiting | Minimum flows needed to protect salmon
redds (110-135 kcfs) | | February | Arrow | Whitefish flows | Unlikely to be limiting | Transactions possible if flows are high | | | | downstream of | | enough survival that spawned whitefish | | | | Arrow | | eggs are not adversely impacted | | | Priest | Vernita Bar flows | Unlikely to be limiting | Minimum flows needed to protect salmon | | | Rapids | | | redds at Vernita Bar (55-70 kcfs). Chum | | | | | | requirement typically more limiting. | | | Bonneville | Chum salmon | Unlikely to be limiting | Minimum flows needed to protect salmon | | Janoh | A was | Whitefish flores | Thilly to be limiting | Thomsontions nossible if floure and high | | IMPRICIT | MOTITE | downstream of | Outledy to be minuted | enough survival that spawned whitefish | | | | Arrow | | eggs are not adversely impacted | | | Grand | Meet minimum | Unlikely to be limiting | Limited by flow needed to meet | | | Coulee | elevation for refill | | downstream minimum flow and elevation | | | | to flood control | | target. | | | | elevation mid Apr. | THE THE PROPERTY OF THE | | | | Priest | Vernita Bar flows | Unlikely to be limiting | Minimum flows needed to protect salmon | | | Rapids | | | redds at Vernita Bar. May become more | | | | | to the second se | ilmiting than chum requirement. | 1 of 312PG-10002 | Month | Project | Issue | Limitations on Positive | Limitations on Negative Water | |----------------|------------------|--|--|---| | | Bonneville | Chum salmon
protection | Unlikely to be limiting | Minimum flows needed to protect salmon redds (110-135 kcfs) | | April | Arrow | Trout Spawning | Limited - low flow desired (15-35 kcfs) so that flows are steady or increasing through June. | Limited - low flow desired (15-35 kcfs) so
that flows are steady or increasing
through June. | | | Grand
Coulee | Meet mid-April
flood control
elevation | Unlikely to be limiting | Limited by flow needed to meet
downstream minimum flow and reach
flood control elevation mid-April. | | | Priest
Rapids | Steelhead flows | Unlikely to be limiting | Minimum flows needed for salmon
(around 135 kcfs) | | May | Arrow | Trout spawning | Limited - need to maintain
flows through June | Limited - need to maintain flows through
June | | | McNary | Salmon flows | Desirable in dry years. | Limited – if flows exceed what is needed for salmon, may be able to shape water into future periods. More limiting than Priest Rapids requirement. | | June | Arrow | Trout spawning | Possible, depending on flow levels | Limited - need to maintain flows through
June | | | Grand
Coulee | Salmon flows and refill | Possible if flows downstream are low | Possible – need to maintain flow levels downstream and refill | | | McNary | Salmon flows | Possible if flows downstream are low | Possible if flows are high | | July
August | McNary
McNary | Salmon flows
Salmon flows | Possible
Unlikely to be limiting | Limited, but possible if flows are high Very limited. Required release of any | | September | Grand
Coulee | Minimum
elevation of
1283 ft. | Unlikely to be limiting | Limited unless there is good water | | | Bonneville | Minimum flow for
navigation | Unlikely to be limiting | May be limiting | 12PG-10002 Exhibit E, Potential Operational Limitations on NTSA Transactions | Month | Project | Issue | Limitations on Positive | Limitations on Negative Water | |----------|------------|------------------|---|--| | | | | Water Transactions | Transactions | | October | Priest | Vernita Bar | May be limited in high flow | Largely unrestricted | | , | Kapids | salmon | conditions. Daytime flows limited to (50-70 kefs) mid-Oct | | | | | | - late Nov. for fall Chinook | | | | | | spawning | | | | Bonneville | Minimum flow for | Unlikely to be limiting | May be limiting | | November | Priest | Vernita Bar | May be limited in high flow | Largely unrestricted | | | Rapids | salmon | conditions. Daytime flows | | | | : | | limited to (50-70 kcfs) mid-Oct | | | | | - | late Nov. for fall Chinook | | | | | | spawning | | | | Bonneville | Chum salmon | Limited in high flow conditions | Limiting | | | | protection | | Minimum flows needed to protect salmon
redds (110-135 kcfs) | | December | Priest | Vernita Bar | May be limited in high flow | Largely unrestricted | | | Rapids | salmon | conditions. Daytime flows | | | | | | limited to (50-70 kcfs) mid-Oct | | | | | | late Nov. for fall Chinook | | | | | | spawning | | | | Bonneville | Chum salmon | Limited in high flow conditions | Limiting | | | - | protection | | Minimum flows needed to protect salmon redde (110, 135 kefs) | | | | | | Tomms (TTO-TOO WOT) | ### Exhibit F DETERMINATION OF AVAILABLE ENERGY BALANCE - 1. The right of a Party to request energy deliveries pursuant to Section 6(c) of the Agreement is based on the Party having an Available Energy Balance in its favor, as calculated in accordance with this Exhibit, and is intended to be a mechanism to manage balances in the Transaction Benefit Account and reduce the amount of the financial settlement as of August 31 of each year. The Available Energy Balance is in BCH's favor if positive, and in BPA's favor if negative. - 2. Beginning with the first full Treaty Week in September and continuing through to and including the first full Treaty Week in August of the following year, the Available Energy Balance shall be calculated as follows: Available Energy Balance = TBA + A - B; where - "TBA" = Transaction Benefit Account balance (which may be a positive or negative value), - "A" = The energy value attributed to Head Loss Energy for the prior year ending August 31 (this will be a positive value), subject to Section 3 below, and - "B" = The energy value attributed to BCH Water Transactions that reduce Arrow outflows where the Parties have made an agreement for BCH to release that water by the upcoming August 31 (this will be a negative value). - 3. From the Effective Date through August 31, 2012, the energy value in "A" above shall be equal to \$3.4 million. - 4. In the time period not covered by that specified in Section 2 above, the Available Energy Balance shall be equal to the Transaction Benefit Account balance. - 5. For the purpose of scheduling energy deliveries under Section 6(c) of the Agreement, the Available Energy Balance shall be the balance calculated as of the end of the Treaty Week prior to the week in which the request is made. # Exhibit G TRANSACTION REQUEST PROTOCOL AND ENERGY SCHEDULING GUIDELINES #### 1. WATER TRANSACTION COORDINATION AND REQUEST PROTOCOL Water Transaction requests pursuant to Section 4(a) of the Agreement shall be coordinated in conjunction with the Weekly Treaty Storage Operation Agreement for the upcoming
Treaty Week. On each Thursday, or earlier if needed due to U.S. Federal Government or British Columbia holidays or other scheduling considerations, the Parties shall have a weekly conference call to discuss Water Transaction volumes and accounting for the upcoming Treaty Week. BPA shall, upon request, provide BCH with an estimate of the weekly average Federal h/k or, as appropriate, the weekly average U.S. h/k for the upcoming Treaty Week. Water Transaction requests shall be made on a flat, weekly basis for the upcoming Treaty week. Water Transactions shall be deemed to begin at 0000 hours on the day for which the Water Transaction is scheduled. The requesting Party shall specify the Water Transaction requested in kcfs. If all Water Transaction requests for a given week cannot be accommodated, such requests shall be limited in accordance with Section 12 of this Agreement. All requests must be confirmed by 1200 hours Pacific prevailing time on the dayprior to the day on which BPA would carry out pre-schedule Trading (defined as Confirm Request and BPA Trading as per Example 1 below), as specified by the Western Electric Coordinating Council (WECC) scheduling calendar, or earlier if needed due to U.S. Federal Government or British Columbia holidays or other scheduling considerations, to accommodate Water Transactions that are deemed to have resulted in a change in generation on the Downstream Federal Hydro Projects (See Section 6(b)(3) of the Agreement). Unless otherwise agreed, it is intended that the confirmation of Water Transactions shall be timed such that BPA will have opportunity to carry out energy transactions in pre-scheduled markets to capture and mitigate the changes in economic value of flows through the Downstream Federal Hydro Projects resulting from BCH Water Transactions (see Example 1 below). #### Example 1: #### 2. ENERGY SCHEDULING GUIDELINES Requests for energy deliveries under this Agreement shall be finalized on the same schedule as Water Transaction requests. All requests must be confirmed by 1200 hours Pacific prevailing time on the day-prior to the day on which BPA and BCH would carry out pre-schedule Trading, as specified by the WECC scheduling calendar, or earlier if needed due to U.S. Federal Government or British Columbia holidays or other scheduling considerations. (See Confirm Request and BPA/BCH Trading as per Example 1.) The period for which energy schedules shall be requested is the one-week period, lagged by one day, from the Treaty Week. The current Treaty Week is Saturday through Friday, resulting in energy schedules for Sunday through Saturday. ## Exhibit H BRIDGE AGREEMENT RECONCILIATION #### 1. ACTIVE ACCOUNTS In accordance with Section 6(a)(2) of the Agreement, each Party's account balance under the Bridge Agreement as of the Effective Date shall be transferred to the Party's Active Account under this Agreement in accordance with the following formula: Active Account balance = account balance under Bridge Agreement #### 2. TRANSACTION BENEFIT ACCOUNT As of the Effective Date: (1) the energy value associated with BCH water transactions and (2) the value of BPA head loss energy, under the Bridge Agreement, will be carried forward to this Agreement, and the Transaction Benefit Account will be initialized to the sum of (1) and (2). # **S&P Global** Platts # METHODOLOGY AND SPECIFICATIONS GUIDE M2MS – POWER METHODOLOGY Latest update: February 2017 | INTRODUCTION | 2 | PART VII: DEFINITIONS OF THE NORTH AMERICAN LOCATION | INS | SOUTHEAST REGION | 16 | |--|---|---|-----|---|---------------| | HOW THIS METHODOLOGY STATEMENT IS ORGANIZED | 2 | FOR WHICH PLATTS PUBLISHES FORWARD CURVES | 5 | | | | | | PLATTS OFFERS CURVES FOR 72 POWER LOCATIONS IN FIVE | | ERCOT REGION | 17 | | PART I: DATA QUALITY AND DATA SUBMISSION | 2 | REGIONAL PACKAGES AND AN OPTIONAL NATIONAL PACKAGE | 6 | M2MS-POWER ERCOT REGION SYMBOLS FOR 10 YEAR | R FORWARD | | GENERAL PRINCIPLES APPLICABLE TO ALL DERIVATIVE OR | | OPTIONAL M2MS-POWER NATIONAL PACKAGE INCLUDES A | | CURVES (BATE CODE:U) | 17 | | FORWARD MARKETS | 2 | CROSS-SECTION OF 22 NORTH AMERICA POWER CURVES: M2MS-POWER NORTHEAST REGION SYMBOLS FOR 10 YEAR | 6 | M2MS-POWER ERCOT REGION SYMBOLS FOR 20 YEAR | R FORWARD | | | | FORWARD CURVES (BATE CODE:U) | 7 | CURVES (BATE CODE:U) | 17 | | PART II: SECURITY AND CONFIDENTIALITY | 3 | M2MS-POWER NORTHEAST REGION SYMBOLS FOR 20 YEAR | ı | M2MS-POWER WEST REGION SYMBOLS FOR 10 YEAR | | | | | FORWARD CURVES (BATE CODE:U) | 8 | CURVES (BATE CODE:U) | 18 | | PART III: CALCULATING FORWARD CURVES | 3 | | | M2MS-POWER WEST REGION SYMBOLS FOR 20 YEAR CURVES (BATE CODE:U) | FURWARD
18 | | SHAPING | 3 | NORTHEAST REGION | 9 | CORVES (BATE CODE.O) | 10 | | ELECTRICITY MARKET FORECASTS AND 20 YEAR CURVES | 3 | M2MS-POWER PJM/MISO REGION SYMBOLS FOR 10 YEAR | | WEST REGION | 19 | | PEAK/OFF-PEAK CONVERSION | 3 | FORWARD CURVES (BATE CODE:U) | 10 | PLATTS PRODUCES HEAT RATE CURVES FOR THE POV | | | | | M2MS-POWER PJM/MISO REGION SYMBOLS FOR 20 YEAR | | HUB PAIRS SHOWN BELOW: | WEIV/0A3 | | PART IV: PLATTS STANDARDS | 4 | FORWARD CURVES (BATE CODE:U) | 11 | POWER/GAS HUB PAIRS | 21 | | | | P.1144400 | | | | | PART V: CORRECTIONS | 4 | PJM/MISO | 13 | IMPORTANT DISCLOSURE | 24 | | | | M2MS-POWER SOUTHEAST REGION SYMBOLS FOR 10 YEAR | | | | | PART VI: REQUESTS FOR CLARIFICATIONS OF DATA AND |) | FORWARD CURVES (BATE CODE:U) | 15 | REVISION HISTORY | 24 | | COMPLAINTS | 4 | M2MS-POWER SOUTHEAST REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | 15 | | | | | | I OKWAKO COKVES (DATE CODE,O) | 1 3 | | | #### INTRODUCTION Platts' methodologies are designed to produce forward curves that are representative of market value, and of the particular markets to which they relate. Methodology documents describe the specifications for various products reflected by Platts' Market Data, the processes and standards Platts adheres to in collecting data, and the methods by which Platts arrives at final values for publication. These guides are freely available on Platts' website for public review. Platts discloses publicly the days of publication for its forward curves, and the times during each trading day in which Platts considers transactions in determining its forward curves. This schedule of publication is available on Platts' website, at the following link: http://www.platts.com/HolidayHome. The dates of publication and the curve production periods are subject to change in the event of outside circumstances that affect Platts' ability to adhere to its normal publication schedule. Such circumstances include network outages, power failures, acts of terrorism and other situations that result in an interruption in Platts' operations at one or more of its worldwide offices. In the event that any such circumstance occurs, Platts will endeavor, whenever feasible, to communicate publicly any changes to its publication schedule and curve production periods, with as much advance notice as possible. All Platts methodologies reflect Platts' commitment to maintaining best practices. Platts' methodologies have evolved to reflect changing market conditions through time, and will continue to evolve as markets change. A revision history, a cumulative summary of changes to this and future updates, is included at the end of the methodology. #### How this methodology statement is organized This description of methodology for forward curves is divided into seven major parts (I-VII) that parallel the entire process of producing the forward curves. - Part I describes what goes into Platts forward curves, including details on what market data is used. - Part II describes the security practices that Platts uses in handling and treating data. - Part III is a detailed account of how Platts collects market data, and what Platts does with the data to formulate its forward curves.. - Part IV explains the process for verifying that published curves comply with Platts' standards. - Part V lays out the verification and correction process for revising published curves and the criteria Platts uses to determine when it publishes a correction. - Part VI explains how users of Platts forward curves can contact Platts for clarification of data that has been published, or to register a complaint. It also describes how to find out more about Platts' complaint policies. - Part VII is a list of detailed specifications for the trading locations and products for which Platts publishes forward curves in this commodity. #### PART I: DATA QUALITY AND DATA SUBMISSION Platts aggregates multiple data sources to produce a single cross-checked series of curves using an open and validated methodology, offering clients a view of forward values that can be used for independent valuation, mark-to-market validation processes, strategic decision support, or other portfolio risk management processes. The product also provides a valuable source of information for evaluating and verifying internally generated values for marking forward positions. Platts maintains comprehensive historical data on spot and forward prices of individual locations. This dataset is used to define and statistically verify temporal and spatial relationships among the hubs. This data, along with ICE market data, is a primary and critical input into the CRS (Commodity Risk Solutions) quantitative curve generation process and is an asset that is unique to Platts. Platts and IntercontinentalExchange (ICE) reached an agreement in October 2007 to combine the data-gathering capabilities of each company with Platts' expertise and avowed methodology systems to enhance the rapidly growing forward curve product offerings in North American natural gas and electricity.
Under the agreement Platts incorporates ICE settlement and intraday forward trading activity in the Electricity markets on the ICE platform, including daily End of Day and Cleared Settlement reports as key inputs into the Platts M2MS (quantitatively derived using settlement prices) curves. Platts benefits from this relationship by having the exclusive right to use ICE intra-day and end of day data for the purposes of forward curve derivation. #### General Principles Applicable to All Derivative or Forward Markets - Forward prices are a reflection of ICE Market Data and are subject to careful review. - Platts tracks values and interrelationships over the whole course of the day. - Information is cross-checked to ensure data integrity. - Illiquid markets may be estimated as spreads relative to active liquid markets. - Platts gives highest priority to available market data but allows for the use of model data to fill out curves where market data provide no indications. Relevant market information is considered even in the development of prices for hubs where no ICE Market Data data is available. #### PART II: SECURITY AND CONFIDENTIALITY Data is stored in a secure network, in accordance with Platts' policies and procedures. #### PART III: CALCULATING FORWARD CURVES The following section describes how Platts uses the transactional data it has collected in the manner described in Part1, to formulate the forward curves. - 1. Receive ICE pre-settlement data. - 2. Shape ICE settlement data to increase granularity to monthly. The shaping methodology for each curve breaks the package into monthly granularity by combining information from historical forward prices, historical spot prices, and ICE forward prices. When the model is set up, shaping factors are calculated daily to better reflect market conditions. The time horizon used for generating shaping factors is selected to best represent the temporal dimension. - Incorporate ICE activity data. Curves are derived by considering available market information from ICE Intra Day and Activity reports. When the information is available in seasonal packages, Platts applies the shaping methodology to generate monthly curves. - Extend the curves for Market locations using EIA Electricity Market Forecasts. - Derive curves for Proxy locations. The curve is derived based on similarity in seasonal pricing patterns and overall price correlation. This approach necessarily relies on modeling to - a greater degree than Market hubs. Platts performs three calculations to estimate these strips: - Proxy hubs are assigned to market hubs based on their similarity in seasonal pricing patterns and overall price correlation. - The price relationship between the pair of hubs is defined and is calculated from the historical data set. - The monthly values for the market hub are used to determine the prices for the proxy hub. - Quality assurance and review: In daily production, analysts closely monitor the curve shape to differentiate changes in the term structure from other market activity. We check for outliers, curve abnormalities, and unusual price movements. Curves are later verified with ICE Final Settlement data for consistency. - The curves are published and delivered to clients via FTP, Platts. com, channel partners, and/or email. # Shaping For trading packages that include multiple months, Platts derives a shaping methodology for each month to break the package into monthly granularity by combining information from historical forward prices, historical spot prices, and ICE forward prices. When the model is set up, shaping factors are calculated daily to better reflect market conditions. The time horizon used for generating shaping factors is selected to best represent the temporal relationship of the forward price with enough data to guarantee the stability of the curve shapes. Monthly shaping will always average to ICE package values. In daily production, analysts closely monitor the curve shape to differentiate changes in the term structure from other market activity. #### Electricity market forecasts and 20 year curves Platts utilizes electricity price forecasts from the U.S. Energy Information Administration's Electricity Market Forecasts for the purposes of extending curves beyond available market data. For 20 year curves, the first 120 months is consistent with the 120 month M2MS curve of the last trading day of the month. The latter part of the curve is determined by blending the results from electricity market forecasts obtained from the US EIA. Based on the model and current market fundamentals, Platts includes information inferred from near-term market data onto the farther end. The resulting product is a discrete and smooth curve that gives priority to market data when available but has a robust, consistent process for building prices when market data is not available. #### Peak/off-peak conversion - The daily forward prices that make up the Power Forward Curve are for standard on-peak and off-peak forward products. - Standard on-peak forward packages in Eastern and Central markets include power delivered during the 16 on-peak hours on weekdays and exclude weekends and holidays defined by the North American Electric Reliability Corp (NERC). - Standard on-peak forward packages in Western markets include power delivered during the 16 on-peak hours each day Monday through Saturday and exclude Sundays and NERC holidays. - Standard off-peak forward packages in the Eastern and Central markets markets include power delivered during the eight offpeak hours each weekday and all hours on weekends and NERC holidays. - Standard off-peak forward packages in the Western markets include power delivered during the eight off-peak hours Monday through Saturday and all hours on Sunday and NERC holidays. #### PART IV: PLATTS STANDARDS All Platts' employees must adhere to the S&P Global Code of Business Ethics (COBE), which has to be signed annually. The COBE reflects S&P Global's commitment to integrity, honesty and acting in good faith in all its dealings. In addition, Platts requires that all employees attest annually that they do not have any personal relationships or personal financial interests that may influence or be perceived to influence or interfere with their ability to perform their jobs in an objective, impartial and effective manner. Platts has a Quality & Risk Management (QRM) function that is independent of the Commodity Risk Solutions (CRS) group. QRM is responsible for ensuring the quality and adherence to Platts' policies, standards, processes and procedures. The QRM team conduct regular assessments of CRS operations, including checks for adherence to published methodologies. S&P Global's internal auditor, an independent group that reports directly to the parent company's board of directors, reviews the Platts risk assessment programs. #### **PART V: CORRECTIONS** Platts is committed to promptly correcting any material errors. When corrections are made, they are limited to corrections to data that was available when the forward price was calculated. # PART VI: REQUESTS FOR CLARIFICATIONS OF DATA AND COMPLAINTS Platts strives to provide critical information of the highest standards, to facilitate greater transparency and efficiency in physical commodity markets. Platts customers raise questions about its methodologies and the approach taken in the formation of forward curves. Platts strongly values these interactions and encourages dialogue concerning any questions a customer or market stakeholder may have. However, Platts recognizes that occasionally customers may not be satisfied with responses received or the services provided by Platts and wish to escalate matters. Full information about how to contact Platts to request clarification around an assessment, or make a complaint, is available on the Platts website, at: http://www.platts.com/ContactUs/Complaints. #### PART VII: DEFINITIONS OF THE NORTH AMERICAN LOCATIONS FOR WHICH PLATTS PUBLISHES FORWARD CURVES The following M2MS-Power Methodology and Specifications Guide contains the primary specifications and methodologies for Platts Power Forward Curves in North America. The various components of this guide are designed to give Platts subscribers as much information as possible about a wide range of methodology and specification issues. This methodology is current at the time of publication. Platts may issue further updates and enhancements to this methodology and will communicate these to subscribers through its usual publications of record. Such updates will be included in the next version of the methodology. Platts managers will usually be ready to provide guidance when forward curve issues require clarification. Platts' Commodity Risk Solutions (CRS) daily 10 year and monthly 20 year M2MS-Power forward curves aim to bring greater price transparency to power forward markets in North America and to provide an independent view of forward peak/off peak power values for multiple power hubs in the US and Canada, including those where there is minimal or no trading activity on any given day. They provide a regionally comprehensive and industry-accepted standard for normalized short-and long-term power contract valuations. Platts produces M2MS-Power curves at multiple delivery points across North America. We classify our locations into two categories for the purpose of curve production: - Market Hubs: For liquid trading locations at which settlement data is available and verifiable. - Proxy Hubs: For locations where there is little or no market data available. The CRS quantitative methodology uses fundamental analysis and statistical testing to establish a defendable proxy relationship between these hubs and one of the Market hubs defined above. Each value on a 36-month implied volatility curve is obtained as an annualized standard deviation of the month-to-month returns
of the corresponding M2MS forward price, taken over the course of the preceding 12 business months. Each value on a 36-month heat rate curve is obtained as a ratio between the M2MS-Power and M2MS-Gas forward prices on a particular day. The forward prices used to derive the heat rate refer to a specific pair of Power and Gas hubs and the same delivery month. Platts M2MS-Power offers the following curves for the North American Power market: - 120-Month Peak and Off-Peak curves, delivered daily, provide market-based forward price with monthly granularity plus balance of the month for 72 locations. 20-Year Peak and Off-Peak curves, delivered monthly, provide 240-month (20-year) monthly granularity forward curves plus balance of the month for 72 locations, derived by combining the current 120-month regional forward assessments with 20 year annual price projections incorporating market fundamentals. Balance of the month refers to the period beginning from the day after the spot flow date to the last trade date of the month. - 36-Month implied volatility curves. - All curves are available in five regional packages (ERCOT, Northeast, PJM/MISO, Southeast, and West). - A sixth package, M2MS National, contains 22 of the most liquid trading locations in the US and Canada. - The subscribers to both M2MS-Power and M2MS-Gas packages also obtains heat rates. # Platts Offers Curves for 72 Power Locations in Five Regional Packages and an Optional National Package | Northeast Region | PJM/MISO Region | | Southeast Region | ERCOT Region | West Region | |-------------------------------|----------------------------|-----------------|------------------|-------------------|---------------------------| | ISO-NE NE-Mass | Michigan | PJM METED | Florida | ERCOT Houston Hub | Alberta | | ISO-NE New Hampshire | MISO Arkansas Hub | PJM NI Hub | Into Southern | ERCOT North Hub | Calif-Oregon Border | | ISO-NE SE-Mass | MISO Illinois Hub | PJM PECO Zone | Into TVA | ERCOT South Hub | East Colorado | | ISONE Vermont Zone | MISO Indiana Hub | PJM PENELEC | SPP North | ERCOT West Hub | Four Corners | | ISO-NE W Central Mass | MISO Louisiana Hub | PJM PEPCO Zone | SPP South | | Mead | | NEPOOL Connecticut | MISO Minn Hub | PJM PPL Zone | Vacar | | Mid-Columbia | | NEPOOL Mass Hub | MISO Texas Hub | PJM PSEG Zone | | | NOB, Nevada-Oregon Border | | NEPOOL North | PJM Rockland Electric Zone | PJM Western Hub | | | North Path 15 | | NEPOOL RI | PJM AD Hub | | | | Palo Verde | | NY ISO Zone A (West) | PJM AECO | | | | Pinnacle Peak | | NYISO Zone B (Genesee) | PJM AEP | | | | South Path 15 | | NY ISO Zone C (Central) | PJM APS | | | | Utah | | NY ISO Zone D (North) | PJM ATSI | | | | | | NY ISO Zone F (Capital) | PJM BGE Zone | | | | | | NY ISO Zone G (Hudson Val) | PJM ComEd | | | | | | NY ISO H (Milwood) | PJM DEOK | | | | | | NYISO I (Dunwoodie) | PJM DPL | | | | | | NY ISO Zone J (NYC) | PJM Duquesne | | | | | | NY ISO Zone K (Long Island) | PJM Eastern Hub | | | | | | NY ISO Mohawk Valley Zone (E) | PJM FE Ohio | | | | | | Ontario | PJM JCPL Zone | | | | | # Optional M2MS-Power National Package includes a cross-section of 22 North America power curves: ## M2MS-Power National Package | ERCOT Houston Hub | Into Southern | MISO Indiana Hub | North Path 15 | Ontario | PJM Western Hub | |-------------------|-------------------|--------------------|----------------------------|------------|-----------------| | ERCOT North Hub | Mead | MISO Louisiana Hub | NY ISO Zone A (West) | Palo Verde | South Path 15 | | ERCOT South Hub | Mid-Columbia | MISO Texas Hub | NY ISO Zone G (Hudson Val) | PJM AD Hub | | | ERCOT West Hub | MISO Arkansas Hub | NEPOOL Mass Hub | NY ISO Zone J (NYC) | PJM NI Hub | | # M2MS-POWER NORTHEAST REGION SYMBOLS FOR 10 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |-----------------------------------|-------------------|---------|---------|----------|----------------|---------|----------------|---------|----------------|---------|-----------|---------|----------|----------------| | ISO-NE NE-Mass Opk | Market | ENMCB00 | ENMCAyy | ENMCByy | ENMCCyy | ENMCDyy | ENMCEyy | ENMCFyy | ENMCGyy | ENMCHyy | ENMCIyy | ENMCJyy | ENMCKyy | ENMCLyy | | ISO-NE NE-Mass Pk | Market | ENMAB00 | ENMAAyy | ENMAByy | ENMACyy | ENMADyy | ENMAEyy | ENMAFyy | ENMAGyy | ENMAHyy | ENMAIyy | ЕММАЈуу | ENMAKyy | ENMALyy | | ISO-NE New Hampshire Opk | Market | ЕННСВ00 | EHHCAyy | EHHCByy | EHHCCyy | EHHCDyy | EHHCEyy | EHHCFyy | EHHCGyy | EHHCHyy | EHHCIyy | ЕННСЈуу | EHHCKyy | EHHCLyy | | ISO-NE New Hampshire Pk | Market | EHHAB00 | ЕННААуу | EHHAByy | ЕННАСуу | EHHADyy | EHHAEyy | EHHAFyy | EHHAGyy | ЕННАНуу | EHHAIyy | ЕННАЈуу | ЕННАКуу | EHHALyy | | ISO-NE SE-MASS Opk | Market | ESMCB00 | ESMCAyy | ESMCByy | ESMCCyy | ESMCDyy | ESMCEyy | ESMCFyy | ESMCGyy | ESMCHyy | ESMCIyy | ESMCJyy | ESMCKyy | ESMCLyy | | ISO-NE SE-MASS Pk | Market | ESMAB00 | ESMAAyy | ESMAByy | ESMACyy | ESMADyy | ESMAEyy | ESMAFyy | ESMAGyy | ESMAHyy | ESMAIyy | ESMAJyy | ESMAKyy | ESMALyy | | ISONE Vermont Zone Opk | Proxy | EVMCB00 | EVMCAyy | EVMCByy | EVMCCyy | EVMCDyy | EVMCEyy | EVMCFyy | EVMCGyy | EVMCHyy | EVMCIyy | EVMCJyy | EVMCKyy | EVMCLyy | | ISONE Vermont Zone Pk | Proxy | EVMAB00 | EVMAAyy | EVMAByy | EVMACyy | EVMADyy | EVMAEyy | EVMAFyy | EVMAGyy | EVMAHyy | EVMAIyy | ЕVМАЈуу | EVMAKyy | EVMALyy | | ISO-NE W Central Mass Opk | Market | EMMCB00 | EMMCAyy | EMMCByy | EMMCCyy | EMMCDyy | EMMCEyy | EMMCFyy | EMMCGyy | EMMCHyy | EMMCIyy | EMMCJyy | EMMCKyy | EMMCLyy | | ISO-NE W Central Mass Pk | Market | EMMAB00 | EMMAAyy | EMMAByy | EMMACyy | EMMADyy | EMMAEyy | EMMAFyy | EMMAGyy | EMMAHyy | EMMAIyy | ЕММАЈуу | EMMAKyy | EMMALyy | | NEPOOL Mass Hub Opk | Market | ЕМНОВ00 | EMHOAyy | EMHOByy | EMHOCyy | EMHODyy | EMHOEyy | EMHOFyy | EMHOGyy | ЕМНОНуу | EMHOIyy | ЕМНОЈуу | EMHOKyy | EMHOLyy | | NEPOOL Mass Hub Pk | Market | EMHMB00 | EMHMAyy | EMHMByy | EMHMCyy | EMHMDyy | EMHMEyy | EMHMFyy | EMHMGyy | EMHMHyy | EMHMIyy | ЕМНМЈуу | EMHMKyy | EMHMLyy | | NEPOOL-CT Opk | Market | ENCOB00 | ENCOAyy | ENCOByy | ENCOCyy | ENCODyy | ENCOEyy | ENCOFyy | ENCOGyy | ENCOHyy | ENCOIyy | ENCOJyy | ENCOKyy | ENCOLyy | | NEPOOL-CT Pk | Market | ENCMB00 | ENCMAyy | ENCMByy | ENCMCyy | ENCMDyy | ENCMEyy | ENCMFyy | ENCMGyy | ENCMHyy | ENCMIyy | ENCMJyy | ENCMKyy | ENCMLyy | | NEPOOL-North Opk | Market | ENNOB00 | ENNOAyy | ENNOByy | ENNOCyy | ENNODyy | ENNOEyy | ENNOFyy | ENNOGyy | ENNOHyy | ENNOIyy | ENNOJyy | ENNOKyy | ENNOLyy | | NEPOOL-North Pk | Market | ENNMB00 | ENNMAyy | ENNMByy | ENNMCyy | ENNMDyy | ENNMEyy | ENNMFyy | ENNMGyy | ENNMHyy | ENNMIyy | ЕППМЈуу | ENNMKyy | ENNMLyy | | NEPOOL-RI Opk | Proxy | ENROB00 | ENROAyy | ENROByy | ENROCyy | ENRODyy | ENROEyy | ENROFyy | ENROGyy | ENROHyy | ENROIyy | ENROJyy | ENROKyy | ENROLyy | | NEPOOL-RI Pk | Proxy | ENRMB00 | ENRMAyy | ENRMByy | ENRMCyy | ENRMDyy | ENRMEyy | ENRMFyy | ENRMGyy | ENRMHyy | ENRMIyy | ENRMJyy | ENRMKyy | ENRMLyy | | NY ISO B (Genesee) Opk | Proxy | ENBQB00 | ENBQAyy | ENBQByy | ENBQCyy | ENBQDyy | ENBQEyy | ENBQFyy | ENBQGyy | ENBQHyy | ENBQIyy | ENBQJyy | ENBQKyy | ENBQLyy | | NY ISO B (Genesee) Pk | Proxy | ENBPB00 | ENBPAyy | ENBPByy | ENBPCyy | ENBPDyy | ENBPEyy | ENBPFyy | ENBPGyy | ENBPHyy | ENBPIyy | ENВРЈуу | ENBPKyy | ENBPLyy | | NY ISO H (Milwood) Opk | Proxy | ENHQB00 | ENHQAyy | ENHQByy | ENHQCyy | ENHQDyy | ENHQEyy | ENHQFyy | ENHQGyy | ENHQHyy | ENHQIyy | ENHQJyy | ENHQKyy | ENHQLyy | | NY ISO H (Milwood) Pk | Proxy | ENHPB00 | ENHPAyy | ENHPByy | ENHPCyy | ENHPDyy | ENHPEyy | ENHPFyy | ENHPGyy | ENHPHyy | ENHPIyy | ЕМНРЈуу | ENHPKyy | ENHPLyy | | NY ISO Mohawk Valley Zone (E) Opk | Proxy | ENECB00 | ENECAyy | ENECByy | ENECCyy | ENECDyy | ENECEyy | ENECFyy | ENECGyy | ENECHyy | ENECIyy | ENECJyy | ENECKyy | ENECLyy | | NY ISO Mohawk Valley Zone (E) Pk | Proxy | ENEAB00 | ENEAAyy | ENEAByy | ENEACyy | ENEADyy | ENEAEyy | ENEAFyy | ENEAGyy | ENEAHyy | ENEALyy | ENEAJyy | ENEAKyy | ENEALyy | | NY ISO Zone A (West) Opk | Market | ENAOB00 | ENAOAyy | ENAOByy | ENAOCyy | ENAODyy | ENAOEyy | ENAOFyy | ENAOGyy | ENAOHyy | ENAOIyy | ENAOJyy | ENAOKyy | ENAOLyy | | NY ISO Zone A (West) Pk | Market | ENAMB00 | ENAMAyy | ENAMByy | ENAMCyy | ENAMDyy | ENAMEyy | ENAMFyy | ENAMGyy | ENAMHyy | ENAMIyy | ENAMJyy | ENAMKyy | ENAMLyy | | NY ISO Zone C (Central) Opk | Market | ECNCB00 | ECNCAyy | ECNCByy | ECNCCyy | ECNCDyy | ECNCEyy | ECNCFyy | ECNCGyy | ECNCHyy | ECNCIyy | ECNCJyy | ECNCKyy | ECNCLyy | | NY ISO Zone C (Central) Pk | Market | ECNAB00 | ECNAAyy | ECNAByy | ECNACyy | ECNADyy | ECNAEyy | ECNAFyy | ECNAGyy | ECNAHyy | ECNAIyy | ECNAJyy | ECNAKyy | ECNALyy | | NY ISO Zone D (North) Opk | Market | ENDOB00 | ENDOAyy | ENDOByy | ENDOCyy | ENDODyy | ENDOEyy | ENDOFyy | ENDOGyy | ENDOHyy | ENDOIyy | ENDOJyy | ENDOKyy | ENDOLyy | | NY ISO Zone D (North) Pk | Market | ENDMB00 | ENDMAyy | ENDMByy | ENDMCyy | ENDMDyy | ENDMEyy | ENDMFyy | ENDMGyy | ENDMHyy | ENDMIyy | ENDMJyy | ENDMKyy | ENDMLyy | | NY ISO Zone F (Capital) Opk | Market | EFNCB00 | EFNCAyy | EFNCByy | EFNCCyy | EFNCDyy | EFNCEyy | EFNCFyy | EFNCGyy | EFNCHyy | EFNCIyy | EFNCJyy | EFNCKyy | EFNCLyy | | NY ISO Zone F (Capital) Pk | Market | EFNAB00 | EFNAAyy | EFNAByy | EFNACyy | EFNADyy | EFNAEyy | EFNAFyy | EFNAGyy | EFNAHyy | EFNAIyy | EFNAJyy | EFNAKyy | EFNALyy | | NY ISO Zone G (Hudson Val) Opk | Market | ENGOB00 | ENGOAyy | ENGOByy | ENGOCyy | ENGODyy | ENGOEyy | ENGOFyy | ENGOGyy | ENGOHyy | ENGOIyy | ENGOJyy | ENGOKyy | ENGOLyy | | NY ISO Zone G (Hudson Val) Pk | Market | ENGMB00 | ENGMAyy | ENGMByy | ENGMCyy | ENGMDyy | ENGMEyy | ENGMFyy | ENGMGyy | ENGMHyy | ENGMIyy | ENGMJyy | ENGMKyy | ENGMLyy | | NY ISO Zone J (NYC) Opk | Market | ENJOB00 | ENJOAyy | ENJOByy | ENJOCyy | ENJODyy | ENJOEyy | ENJOFyy | ENJOGyy | ENJOHyy | ENJOIyy | ENJOJyy
| ENJOKyy | ENJOLyy | | NY ISO Zone J (NYC) Pk | Market | ENJMB00 | ENJMAyy | ENJMByy | ENJMCyy | ENJMDyy | ENJMEyy | ENJMFyy | ENJMGyy | ENJMHyy | ENJMIyy | ЕМЈМЈуу | ENJMKyy | ENJMLyy | | NY ISO Zone K (Long Island) Opk | Proxy | ENKOB00 | ENKOAyy | ENKOByy | ENKOCyy | ENKODyy | ENKOEyy | ENKOFyy | ENKOGyy | ENKOHyy | ENKOIyy | ENKOJyy | ENKOKyy | ENKOLyy | | NY ISO Zone K (Long Island) Pk | Proxy | ENKMB00 | ENKMAyy | ENKMByy | ENKMCyy | ENKMDyy | ENKMEyy | ENKMFyy | ENKMGyy | ENKMHyy | ENKMIyy | ENKMJyy | ENKMKyy | ENKMLyy | | NYISO I (Dunwoodie) Opk | Proxy | EINQB00 | EINQAyy | EINQByy | EINQCyy | EINQDyy | EINQEyy | EINQFyy | EINQGyy | EINQHyy | EINQIyy | EINQJyy | EINQKyy | EINQLyy | | NYISO I (Dunwoodie) Pk | Proxy | EINPB00 | EINPAyy | EINPByy | EINPCyy | EINPDyy | EINPEyy | EINPFyy | EINPGyy | EINPHyy | EINPIyy | EINPJyy | EINPKyy | EINPLyy | | Ontario Opk | Market | EONOB00 | EONOAyy | EONOByy | EONOCyy | EONODyy | EONOEyy | EONOFyy | EONOGyy | EONOHyy | EONOIyy | EONOJyy | EONOKyy | EONOLyy | | Ontario Pk | Market | EONMB00 | EONMAyy | EONMByy | EONMCyy | EONMDyy | EONMEyy | EONMFyy | EONMGyy | EONMHyy | EONMIyy | EONMJyy | EONMKyy | EONMLyy | ^{*}The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENMBA17. # M2MS-POWER NORTHEAST REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |-----------------------------------|-------------------|---------|---------|----------|---------|---------|----------------|---------|---------|---------|-----------|---------|----------|----------| | ISO-NE NE-Mass Opk | Market | ENMDB00 | ENMDAyy | ENMDByy | ENMDCyy | ENMDDyy | ENMDEyy | ENMDFyy | ENMDGyy | ENMDHyy | ENMDIyy | ENMDJyy | ENMDKyy | ENMDLyy | | ISO-NE NE-Mass Pk | Market | ENMBB00 | ENMBAyy | ENMBByy | ENMBCyy | ENMBDyy | ENMBEyy | ENMBFyy | ENMBGyy | ENMBHyy | ENMBIyy | ЕММВЈуу | ENMBKyy | ENMBLyy | | ISO-NE New Hampshire Opk | Market | EHHDB00 | EHHDAyy | EHHDByy | EHHDCyy | EHHDDyy | EHHDEyy | EHHDFyy | EHHDGyy | EHHDHyy | EHHDIyy | ЕННОЈуу | EHHDKyy | EHHDLyy | | ISO-NE New Hampshire Pk | Market | EHHBB00 | ЕННВАуу | ЕННВВуу | ЕННВСуу | EHHBDyy | ЕННВЕУУ | EHHBFyy | EHHBGyy | ЕННВНуу | EHHBIyy | ЕННВЈуу | ЕННВКуу | EHHBLyy | | ISO-NE SE-MASS Opk | Market | ESMDB00 | ESMDAyy | ESMDByy | ESMDCyy | ESMDDyy | ESMDEyy | ESMDFyy | ESMDGyy | ESMDHyy | ESMDIyy | ESMDJyy | ESMDKyy | ESMDLyy | | ISO-NE SE-MASS Pk | Market | ESMBB00 | ESMBAyy | ESMBByy | ESMBCyy | ESMBDyy | ESMBEyy | ESMBFyy | ESMBGyy | ESMBHyy | ESMBIyy | ESMBJyy | ESMBKyy | ESMBLyy | | ISONE Vermont Zone Opk | Proxy | EVMDB00 | EVMDAyy | EVMDByy | EVMDCyy | EVMDDyy | EVMDEyy | EVMDFyy | EVMDGyy | EVMDHyy | EVMDIyy | EVMDJyy | EVMDKyy | EVMDLyy | | ISONE Vermont Zone Pk | Proxy | EVMBB00 | EVMBAyy | EVMBByy | EVMBCyy | EVMBDyy | EVMBEyy | EVMBFyy | EVMBGyy | EVMBHyy | EVMBIyy | EVMBЈуу | EVMBKyy | EVMBLyy | | ISO-NE W Central Mass Opk | Market | EMMDB00 | EMMDAyy | EMMDByy | EMMDCyy | EMMDDyy | EMMDEyy | EMMDFyy | EMMDGyy | EMMDHyy | EMMDIyy | EMMDJyy | EMMDKyy | EMMDLyy | | ISO-NE W Central Mass Pk | Market | EMMBB00 | EMMBAyy | EMMBByy | EMMBCyy | EMMBDyy | EMMBEyy | EMMBFyy | EMMBGyy | EMMBHyy | EMMBIyy | ЕММВЈуу | EMMBKyy | EMMBLyy | | NEPOOL Mass Hub Opk | Market | EMHQB00 | EMHQAyy | EMHQByy | EMHQCyy | EMHQDyy | EMHQEyy | EMHQFyy | EMHQGyy | EMHQHyy | EMHQIyy | EMHQJyy | EMHQKyy | EMHQLyy | | NEPOOL Mass Hub Pk | Market | EMHPB00 | EMHPAyy | EMHPByy | EMHPCyy | EMHPDyy | EMHPEyy | EMHPFyy | EMHPGyy | EMHPHyy | EMHPIyy | ЕМНРЈуу | EMHPKyy | EMHPLyy | | NEPOOL-CT Opk | Market | ENCQB00 | ENCQAyy | ENCQByy | ENCQCyy | ENCQDyy | ENCQEyy | ENCQFyy | ENCQGyy | ENCQHyy | ENCQIyy | ENCQJyy | ENCQKyy | ENCQLyy | | NEPOOL-CT Pk | Market | ENCPB00 | ENCPAyy | ENCPByy | ENCPCyy | ENCPDyy | ENCPEyy | ENCPFyy | ENCPGyy | ENCPHyy | ENCPIyy | ENCPJyy | ENCPKyy | ENCPLyy | | NEPOOL-North Opk | Market | ENNQB00 | ENNQAyy | ENNQByy | ENNQCyy | ENNQDyy | ENNQEyy | ENNQFyy | ENNQGyy | ENNQHyy | ENNQIyy | ENNQJyy | ENNQKyy | ENNQLyy | | NEPOOL-North Pk | Market | ENNPB00 | ENNPAyy | ENNPByy | ENNPCyy | ENNPDyy | ENNPEyy | ENNPFyy | ENNPGyy | ENNPHyy | ENNPIyy | ENNPJyy | ENNPKyy | ENNPLyy | | NEPOOL-RI Opk | Proxy | ENRQB00 | ENRQAyy | ENRQByy | ENRQCyy | ENRQDyy | ENRQEyy | ENRQFyy | ENRQGyy | ENRQHyy | ENRQIyy | ENRQJyy | ENRQKyy | ENRQLyy | | NEPOOL-RI Pk | Proxy | ENRPB00 | ENRPAyy | ENRPByy | ENRPCyy | ENRPDyy | ENRPEyy | ENRPFyy | ENRPGyy | ENRPHyy | ENRPIyy | ENRPJyy | ENRPKyy | ENRPLyy | | NY ISO B (Genesee) Opk | Proxy | ENBOB00 | ENBOAyy | ENBOByy | ENBOCyy | ENBODyy | ENBOEyy | ENBOFyy | ENBOGyy | ENBOHyy | ENBOIyy | ENBOJyy | ENBOKyy | ENBOLyy | | NY ISO B (Genesee) Pk | Proxy | ENBMB00 | ENBMAyy | ENBMByy | ENBMCyy | ENBMDyy | ENBMEyy | ENBMFyy | ENBMGyy | ENBMHyy | ENBMIyy | ENВМЈуу | ENBMKyy | ENBMLyy | | NY ISO H (Milwood) Opk | Proxy | ENHOB00 | ENHOAyy | ENHOByy | ENHOCyy | ENHODyy | ENHOEyy | ENHOFyy | ENHOGyy | ENHOHyy | ENHOIyy | ЕМНОЈуу | ENHOKyy | ENHOLyy | | NY ISO H (Milwood) Pk | Proxy | ENHMB00 | ENHMAyy | ENHMByy | ENHMCyy | ENHMDyy | ENHMEyy | ENHMFyy | ENHMGyy | ENHMHyy | ENHMIyy | ЕННМЈуу | ENHMKyy | ENHMLyy | | NY ISO Mohawk Valley Zone (E) Opk | Proxy | ENEDB00 | ENEDAyy | ENEDByy | ENEDCyy | ENEDDyy | ENEDEyy | ENEDFyy | ENEDGyy | ENEDHyy | ENEDIyy | ENEDJyy | ENEDKyy | ENEDLyy | | NY ISO Mohawk Valley Zone (E) Pk | Proxy | ENEBB00 | ENEBAyy | ENEBByy | ENEBCyy | ENEBDyy | ENEBEyy | ENEBFyy | ENEBGyy | ENEBHyy | ENEBIyy | ENEBJyy | ENEBKyy | ENEBLyy | | NY ISO Zone A (West) Opk | Market | ENAQB00 | ENAQAyy | ENAQByy | ENAQCyy | ENAQDyy | ENAQEyy | ENAQFyy | ENAQGyy | ENAQHyy | ENAQIyy | ENAQJyy | ENAQKyy | ENAQLyy | | NY ISO Zone A (West) Pk | Market | ENAPB00 | ENAPAyy | ENAPByy | ENAPCyy | ENAPDyy | ENAPEyy | ENAPFyy | ENAPGyy | ENAPHyy | ENAPIyy | ENAPJyy | ENAPKyy | ENAPLyy | | NY ISO Zone C (Central) Opk | Market | ECNDB00 | ECNDAyy | ECNDByy | ECNDCyy | ECNDDyy | ECNDEyy | ECNDFyy | ECNDGyy | ECNDHyy | ECNDIyy | ECNDJyy | ECNDKyy | ECNDLyy | | NY ISO Zone C (Central) Pk | Market | ECNBB00 | ECNBAyy | ECNBByy | ECNBCyy | ECNBDyy | ECNBEyy | ECNBFyy | ECNBGyy | ECNBHyy | ECNBIyy | ECNBJyy | ECNBKyy | ECNBLyy | | NY ISO Zone D (North) Opk | Market | ENDQB00 | ENDQAyy | ENDQByy | ENDQCyy | ENDQDyy | ENDQEyy | ENDQFyy | ENDQGyy | ENDQHyy | ENDQIyy | ENDQJyy | ENDQKyy | ENDQLyy | | NY ISO Zone D (North) Pk | Market | ENDPB00 | ENDPAyy | ENDPByy | ENDPCyy | ENDPDyy | ENDPEyy | ENDPFyy | ENDPGyy | ENDPHyy | ENDPIyy | ENDPJyy | ENDPKyy | ENDPLyy | | NY ISO Zone F (Capital) Opk | Market | EFNDB00 | EFNDAyy | EFNDByy | EFNDCyy | EFNDDyy | EFNDEyy | EFNDFyy | EFNDGyy | EFNDHyy | EFNDIyy | EFNDJyy | EFNDKyy | EFNDLyy | | NY ISO Zone F (Capital) Pk | Market | EFNBB00 | EFNBAyy | EFNBByy | EFNBCyy | EFNBDyy | EFNBEyy | EFNBFyy | EFNBGyy | EFNBHyy | EFNBIyy | EFNBJyy | EFNBKyy | EFNBLyy | | NY ISO Zone G (Hudson Val) Opk | Market | ENGQB00 | ENGQAyy | ENGQByy | ENGQCyy | ENGQDyy | ENGQEyy | ENGQFyy | ENGQGyy | ENGQHyy | ENGQIyy | ENGQJyy | ENGQKyy | ENGQLyy | | NY ISO Zone G (Hudson Val) Pk | Market | ENGPB00 | ENGPAyy | ENGPByy | ENGPCyy | ENGPDyy | ENGPEyy | ENGPFyy | ENGPGyy | ENGPHyy | ENGPIyy | ENGPJyy | ENGPKyy | ENGPLyy | | NY ISO Zone J (NYC) Opk | Market | ENJQB00 | ENJQAyy | ENJQByy | ENJQCyy | ENJQDyy | ENJQEyy | ENJQFyy | ENJQGyy | ENJQHyy | ENJQIyy | ENJQJyy | ENJQKyy | ENJQLyy | | NY ISO Zone J (NYC) Pk | Market | ENJPB00 | ENJPAyy | ENJPByy | ENJPCyy | ENJPDyy | ENJPEyy | ENJPFyy | ENJPGyy | ENJPHyy | ENJPIyy | ENJPJyy | ENJPKyy | ENJPLyy | | NY ISO Zone K (Long Island) Opk | Proxy | ENKQB00 | ENKQAyy | ENKQByy | ENKQCyy | ENKQDyy | ENKQEyy | ENKQFyy | ENKQGyy | ENKQHyy | ENKQIyy | ENKQJyy | ENKQKyy | ENKQLyy | | NY ISO Zone K (Long Island) Pk | Proxy | ENKPB00 | ENKPAyy | ENKPByy | ENKPCyy | ENKPDyy | ENKPEyy | ENKPFyy | ENKPGyy | ENKPHyy | ENKPIyy | ENKPJyy | ENKPKyy | ENKPLyy | | NYISO I (Dunwoodie) Opk | Proxy | EINOB00 | EINOAyy | EINOByy | EINOCyy | EINODyy | EINOEyy | EINOFyy | EINOGyy | EINOHyy | EINOIyy | EINOJyy | EINOKyy | EINOLyy | | NYISO I (Dunwoodie) Pk | Proxy | EINMB00 | EINMAyy | EINMByy | EINMCyy | EINMDyy | EINMEyy | EINMFyy | EINMGyy | EINMHyy | EINMIyy | EINMJyy | EINMKyy | EINMLyy | | Ontario Opk | Market | EONQB00 | EONQAyy | EONQByy | EONQCyy | EONQDyy | EONQEyy | EONQFyy | EONQGyy | EONQHyy | EONQIyy | EONQJyy | EONQKyy | EONQLyy | | Ontario Pk | Market | EONPB00 | EONPAyy | EONPByy | EONPCyy | EONPDyy | EONPEyy | EONPFyy | EONPGyy | EONPHyy | EONPIyy | EONPJyy | EONPKyy | EONPLyy | ^{*} The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy in ENMBAyy from the table above with 17 to make ENMBA17. #### **NORTHEAST REGION** #### ISO-NE NE-Mass NE-Mass, or Northeast Mass, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### ISO-NE New Hampshire ISO-NE New Hampshire is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### ISO-NE SE-Mass SE-Mass, or Southeast Mass, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### ISO-NE Vermont Zone ISO-NE Vermont Zone is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### ISO-NE W Central Mass W Central Mass, or West
Central Mass, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### **NEPOOL Connecticut** NEPOOL Connecticut, or ISO-NE Connecticut, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### NEPOOL Mass Hub NEPOOL Mass Hub, or ISO-NE Mass Hub, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### NEPOOL North NEPOOL North, or ISO-NE Maine, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### NEPOOL RI NEPOOL RI, or ISO-NE Rhode Island, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by ISO-NE on their website www.iso-ne.com. #### NY ISO Zone A (West) NY ISO Zone A, or West Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NYISO Zone B (Genesee) NYISO Zone B, or Gennesee Zone is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NY ISO Zone C (Central) NY ISO Zone C, or Central Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NY ISO Zone D (North) NY ISO Zone D, or North Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NY ISO Zone F (Capital) NY ISO Zone F, or Capital Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NY ISO Zone G (Hudson Val) NY ISO Zone G, or Hudson Valley Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NY ISO H (Milwood) NYISO H, or Mllwood Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NYISO I (Dunwoodie) NYISO I, or Dunwoodie Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com.NY ISO Zone J (NYC) #### NYISO Zone J (NYC) NY ISO Zone J, or New York City Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NY ISO Zone K (Long Island) NY ISO Zone K, or Long Island Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### NY ISO Mohawk Valley Zone (E) NY ISO Zone E, or Mohawk Valley Zone, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by NYISO on their website www.nyiso.com. #### Ontario The Ontario market and pricing area comprises the grid controlled by Ontario's independent system operator, the Independent Electricity System Operator (IESO). # M2MS-POWER PJM/MISO REGION SYMBOLS FOR 10 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |-----------------------|-------------------|---------|---------|----------|---------|---------|---------|----------------|---------|---------|-----------|---------|----------|----------| | Michigan Opk | Market | EMIOB00 | EMIOAyy | EMIOByy | EMIOCyy | EMIODyy | EMIOEyy | EMIOFyy | EMIOGyy | EMIOHyy | EMIOIyy | ЕМІОЈуу | EMIOKyy | EMIOLyy | | Michigan Pk | Market | EMIMB00 | EMIMAyy | EMIMByy | EMIMCyy | EMIMDyy | EMIMEyy | EMIMFyy | EMIMGyy | EMIMHyy | EMIMIyy | ЕМІМЈуу | EMIMKyy | EMIMLyy | | Minn Hub Opk | Market | EPMOB00 | EPMOAyy | ЕРМОВуу | EPMOCyy | EPMODyy | EPMOEyy | EPMOFyy | EPMOGyy | ЕРМОНуу | EPMOIyy | ЕРМОЈуу | ЕРМОКуу | EPMOLyy | | Minn Hub Pk | Market | EPMMB00 | EPMMAyy | EPMMByy | EPMMCyy | EPMMDyy | EPMMEyy | EPMMFyy | EPMMGyy | EPMMHyy | EPMMIyy | ЕРММЈуу | EPMMKyy | EPMMLyy | | MISO Arkansas Hub Opk | Market | EMACB00 | EMACAyy | EMACByy | EMACCyy | EMACDyy | EMACEyy | EMACFyy | EMACGyy | EMACHyy | EMACIyy | EMACJyy | EMACKyy | EMACLyy | | MISO Arkansas Hub Pk | Market | EMAAB00 | EMAAAyy | EMAAByy | EMAACyy | EMAADyy | EMAAEyy | EMAAFyy | EMAAGyy | EMAAHyy | EMAAIyy | ЕМААЈуу | EMAAKyy | EMAALyy | | MISO Illinois Hub Opk | Market | EILCB00 | EILCAyy | EILCByy | EILCCyy | EILCDyy | EILCEyy | EILCFyy | EILCGyy | EILCHyy | EILCIyy | EILCJyy | EILCKyy | EILCLyy | | MISO Illinois Hub Pk | Market | EILAB00 | EILAAyy | EILAByy | EILACyy | EILADyy | EILAEyy | EILAFyy | EILAGyy | EILAHyy | EILAIyy | EILAJyy | EILAKyy | EILALyy | | MISO Indiana Opk | Market | ECIOB00 | ECIOAyy | ECIOByy | ECIOCyy | ECIODyy | ECI0Eyy | ECIOFyy | ECIOGyy | ECIOHyy | ECIOIyy | ЕСІОЈуу | ECIOKyy | ECIOLyy | | MISO Indiana Pk | Market | ECIMB00 | ECIMAyy | ECIMByy | ECIMCyy | ECIMDyy | ECIMEyy | ECIMFyy | ECIMGyy | ECIMHyy | ECIMIyy | ECIMJyy | ECIMKyy | ECIMLyy | | MISO Louisiana Opk | Market | EMLCB00 | EMLCAyy | EMLCByy | EMLCCyy | EMLCDyy | EMLCEyy | EMLCFyy | EMLCGyy | EMLCHyy | EMLCIyy | EMLCJyy | EMLCKyy | EMLCLyy | | MISO Louisiana Pk | Market | EMLAB00 | EMLAAyy | EMLAByy | EMLACyy | EMLADyy | EMLAEyy | EMLAFyy | EMLAGyy | EMLAHyy | EMLAIyy | EMLAJyy | EMLAKyy | EMLALyy | | MISO Texas Hub Opk | Market | EMECB00 | EMECAyy | EMECByy | EMECCyy | EMECDyy | EMECEyy | EMECFyy | EMECGyy | EMECHyy | EMECIyy | EMECJyy | EMECKyy | EMECLyy | | MISO Texas Hub Pk | Market | EMEAB00 | EMEAAyy | EMEAByy | EMEACyy | EMEADyy | EMEAEyy | EMEAFyy | EMEAGyy | EMEAHyy | EMEAIyy | ЕМЕАЈуу | EMEAKyy | EMEALyy | | PJM AD Hub Opk | Market | EECOB00 | EECOAyy | EECOByy | EECOCyy | EECODyy | EEC0Eyy | EECOFyy | EECOGyy | EECOHyy | EECOIyy | ЕЕСОЈуу | EECOKyy | EECOLyy | | PJM AD Hub Pk | Market | EECMB00 | EECMAyy | EECMByy | EECMCyy | EECMDyy | EECMEyy | EECMFyy | EECMGyy | EECMHyy | EECMIyy | ЕЕСМЈуу | EECMKyy | EECMLyy | | PJM AECO Opk | Market | EJACB00 | ЕЈАСАуу | ЕЈАСВуу | EJACCyy | EJACDyy | ЕЈАСЕуу | EJACFyy | EJACGyy | ЕЈАСНуу | EJACIyy | ЕЈАСЈуу | ЕЈАСКуу | EJACLyy | | PJM AECO Pk | Market | EJAAB00 | ЕЈАААуу | ЕЈААВуу | EJAACyy | EJAADyy | ЕЈААЕуу | EJAAFyy | EJAAGyy | ЕЈААНуу | EJAAIyy | ЕЈААЈуу | ЕЈААКуу | EJAALyy | | PJM AEP Opk | Market | ЕЈЕОВОО | ЕЈЕОАуу | ЕЈЕОВуу | ЕЈЕОСуу | EJEODyy | ЕЈЕОЕуу | EJE0Fyy | EJEOGyy | ЕЈЕОНуу | EJEOIyy | ЕЈЕОЈуу | ЕЈЕОКуу | EJEOLyy | | PJM AEP Pk | Market | EJEMB00 | EJEMAyy | ЕЈЕМВуу | EJEMCyy | EJEMDyy | ЕЈЕМЕуу | ЕЈЕМҒуу | EJEMGyy | ЕЈЕМНУУ | EJEMIyy | ЕЈЕМЈуу | ЕЈЕМКуу | EJEMLyy | | PJM APS Opk | Market | EJSCB00 | EJSCAyy | EJSCByy | EJSCCyy | EJSCDyy | EJSCEyy | EJSCFyy | EJSCGyy | EJSCHyy | EJSCIyy | ЕЈЅСЈуу | EJSCKyy | EJSCLyy | | PJM APS Pk | Market | EJSAB00 | EJSAAyy | EJSAByy | EJSACyy | EJSADyy | EJSAEyy | EJSAFyy | EJSAGyy | EJSAHyy | EJSAIyy | EJSAJyy | EJSAKyy | EJSALyy | | PJM ATSI Opk | Market | ЕЈТОВОО | ЕЈТОАуу | ЕЈТОВуу | ЕЈТОСуу | EJTODyy | ЕЈТОЕуу | EJT0Fyy | EJTOGyy | ЕЈТОНуу | ЕЈТОӀуу | ЕЈТОЈуу | ЕЈТОКуу | EJTOLyy | | PJM ATSI Pk | Market | EJTMB00 | EJTMAyy | ЕЈТМВуу | EJTMCyy | EJTMDyy | ЕЈТМЕуу | EJTMFyy | EJTMGyy | ЕЈТМНуу | EJTMIyy | ЕЈТМЈуу | ЕЈТМКуу | EJTMLyy | | PJM BGE Zone Opk | Market | EBGOB00 | EBG0Ayy | EBGOByy | EBG0Cyy | EBGODyy | EBG0Eyy | EBG0Fyy | EBGOGyy | EBGOHyy | EBGOIyy | EBG0Jyy | EBGOKyy | EBGOLyy | | PJM BGE Zone Pk | Market | EBGMB00 | EBGMAyy | EBGMByy | EBGMCyy | EBGMDyy | EBGMEyy | EBGMFyy | EBGMGyy | EBGMHyy | EBGMIyy | EBGMJyy | EBGMKyy | EBGMLyy | | PJM ComEd Opk | Market | EJOCB00 | ЕЈОСАуу | ЕЈОСВуу | ЕЈОССуу | EJOCDyy | ЕЈОСЕуу | ЕЈОСҒуу | EJ0CGyy | ЕЈОСНуу | EJOCIyy | ЕЈОСЈуу | ЕЈОСКуу | EJ0CLyy | | PJM ComEd Pk | Market | EJOAB00 | ЕЈОААуу | ЕЈОАВуу | EJ0ACyy | EJOADyy | ЕЈОАЕуу | ЕЈОАҒуу | EJOAGyy | ЕЈОАНуу | EJOAIyy | ЕЈОАЈуу | ЕЈОАКуу | EJ0ALyy | | PJM DEOK Opk | Market | ЕЈКОВ00 | ЕЈКОАуу | ЕЈКОВуу | ЕЈКОСуу | EJKODyy | ЕЈКОЕуу | ЕЈКОҒуу | EJKOGyy | ЕЈКОНуу | EJKOIyy | ЕЈКОЈуу | ЕЈКОКуу | EJKOLyy | | PJM DEOK Pk | Market | EJKMB00 | ЕЈКМАуу | ЕЈКМВуу | ЕЈКМСуу | EJKMDyy | ЕЈКМЕуу | ЕЈКМҒуу | EJKMGyy | ЕЈКМНуу | EJKMIyy | ЕЈКМЈуу | ЕЈКМКуу | EJKMLyy | | PJM DPL Opk | Market | EJDCB00 | EJDCAyy | EJDCByy | EJDCCyy | EJDCDyy | EJDCEyy | EJDCFyy | EJDCGyy | EJDCHyy | EJDCIyy | EJDCJyy | EJDCKyy | EJDCLyy | | PJM DPL Pk | Market | EJDAB00 | EJDAAyy | EJDAByy | EJDACyy | EJDADyy | EJDAEyy | EJDAFyy | EJDAGyy | EJDAHyy | EJDAIyy | EJDAJyy | EJDAKyy | EJDALyy | | PJM Duquesne Opk | Market | EJUCB00 | EJUCAyy | EJUCByy | EJUCCyy | EJUCDyy | EJUCEyy | EJUCFyy | EJUCGyy | ЕЈИСНуу | EJUCIyy | EJUCJyy | EJUCKyy | EJUCLyy | | PJM Duquesne Pk | Market | EJUAB00 | EJUAAyy | EJUAByy | EJUACyy | EJUADyy | EJUAEyy | EJUAFyy | EJUAGyy | EJUAHyy | EJUAIyy | ЕЈИАЈуу | EJUAKyy | EJUALyy | | PJM Eastern Hub Opk | Market | EPEOB00 | EPE0Ayy | EPEOByy | EPE0Cyy | EPEODyy | EPE0Eyy | EPEOFyy | EPEOGyy | EPE0Hyy | EPEOIyy | ЕРЕОЈуу | EPEOKyy | EPEOLyy | | PJM Eastern Hub Pk | Market | EPEMB00 | EPEMAyy | EPEMByy | EPEMCyy | EPEMDyy | EPEMEyy | EPEMFyy | EPEMGyy | EPEMHyy | EPEMIyy | ЕРЕМЈуу |
EPEMKyy | EPEMLyy | | PJM FE Ohio Opk | Market | ЕЈНОВ00 | ЕЈНОАуу | ЕЈНОВуу | ЕЈНОСуу | EJHODyy | ЕЈНОЕуу | EJHOFyy | EJH0Gyy | ЕЈНОНуу | ЕЈНОӀуу | ЕЈНОЈуу | ЕЈНОКуу | ЕЈНОГуу | # M2MS-POWER PJM/MISO REGION SYMBOLS FOR 10 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |--------------------------------|--------------------------|---------|----------------|----------------|---------|----------------|----------------|---------|---------|---------|-----------|---------|----------|----------| | PJM FE Ohio Pk | Market | ЕЈНМВ00 | ЕЈНМАУУ | ЕЈНМВуу | ЕЈНМСуу | EJHMDyy | ЕЈНМЕУУ | EJHMFyy | EJHMGyy | ЕЈНМНУУ | EJHMIyy | ЕЈНМЈуу | ЕЈНМКуу | EJHMLyy | | PJM JPCL Zone Opk | Market | ЕЈСОВОО | EJC0Ayy | ЕЈСОВуу | ЕЈСОСуу | EJCODyy | EJC0Eyy | EJCOFyy | EJC0Gyy | ЕЈСОНуу | EJCOIyy | ЕЈСОЈуу | ЕЈСОКуу | EJCOLyy | | PJM JPCL Zone Pk | Market | EJCMB00 | EJCMAyy | ЕЈСМВуу | ЕЈСМСуу | EJCMDyy | ЕЈСМЕуу | EJCMFyy | EJCMGyy | ЕЈСМНуу | EJCMIyy | ЕЈСМЈуу | EJCMKyy | EJCMLyy | | PJM METED Opk | Market | ЕЈМСВ00 | EJMCAyy | ЕЈМСВуу | ЕЈМССуу | EJMCDyy | ЕЈМСЕуу | EJMCFyy | EJMCGyy | ЕЈМСНуу | EJMCIyy | ЕЈМСЈуу | EJMCKyy | EJMCLyy | | PJM METED Pk | Market | EJMAB00 | EJMAAyy | ЕЈМАВуу | EJMACyy | EJMADyy | EJMAEyy | EJMAFyy | EJMAGyy | ЕЈМАНуу | EJMAIyy | ЕЈМАЈуу | EJMAKyy | EJMALyy | | PJM NI Hub Opk | Market | ECEOB00 | ECE0Ayy | ECEOByy | ECE0Cyy | ECEODyy | ECE0Eyy | ECE0Fyy | ECE0Gyy | ECE0Hyy | ECEOIyy | ЕСЕОЈуу | ECEOKyy | ECE0Lyy | | PJM NI Hub Pk | Market | ECEMB00 | ECEMAyy | ECEMByy | ECEMCyy | ECEMDyy | ECEMEyy | ECEMFyy | ECEMGyy | ECEMHyy | ECEMIyy | ЕСЕМЈуу | ECEMKyy | ECEMLyy | | PJM PECO Zone Opk | Market | EPCOB00 | EPC0Ayy | EPCOByy | EPC0Cyy | EPCODyy | EPC0Eyy | EPCOFyy | EPCOGyy | EPC0Hyy | EPCOIyy | ЕРСОЈуу | EPCOKyy | EPCOLyy | | PJM PECO Zone Pk | Market | EPCMB00 | EPCMAyy | EPCMByy | EPCMCyy | EPCMDyy | EPCMEyy | EPCMFyy | EPCMGyy | EPCMHyy | EPCMIyy | ЕРСМЈуу | EPCMKyy | EPCMLyy | | PJM PENELEC Opk | Market | EJNCB00 | EJNCAyy | EJNCByy | EJNCCyy | EJNCDyy | EJNCEyy | EJNCFyy | EJNCGyy | EJNCHyy | EJNCIyy | ЕЈМСЈуу | EJNCKyy | EJNCLyy | | PJM PENELEC Pk | Market | EJNAB00 | EJNAAyy | EJNAByy | EJNACyy | EJNADyy | EJNAEyy | EJNAFyy | EJNAGyy | EJNAHyy | EJNAIyy | ЕЈNАЈуу | EJNAKyy | EJNALyy | | PJM PEPCO Zone Opk | Market | EPPOB00 | EPPOAyy | ЕРРОВуу | EPP0Cyy | EPPODyy | EPPOEyy | EPPOFyy | EPPOGyy | ЕРРОНуу | EPPOIyy | ЕРРОЈуу | EPPOKyy | EPPOLyy | | PJM PEPCO Zone Pk | Market | EPPMB00 | EPPMAyy | EPPMByy | EPPMCyy | EPPMDyy | EPPMEyy | EPPMFyy | EPPMGyy | ЕРРМНуу | EPPMIyy | ЕРРМЈуу | EPPMKyy | EPPMLyy | | PJM PPL Zone Opk | Market | EPLOB00 | EPLOAyy | EPLOByy | EPLOCyy | EPLODyy | EPLOEyy | EPLOFyy | EPLOGyy | EPLOHyy | EPLOIyy | EPLOJyy | EPLOKyy | EPLOLyy | | PJM PPL Zone Pk | Market | EPLMB00 | EPLMAyy | EPLMByy | EPLMCyy | EPLMDyy | EPLMEyy | EPLMFyy | EPLMGyy | EPLMHyy | EPLMIyy | EPLMJyy | EPLMKyy | EPLMLyy | | PJM PSEG Zone Opk | Market | ESGOB00 | ESG0Ayy | ESGOByy | ESG0Cyy | ESGODyy | ESG0Eyy | ESG0Fyy | ESG0Gyy | ESG0Hyy | ESG0Iyy | ESG0Jyy | ESG0Kyy | ESG0Lyy | | PJM PSEG Zone Pk | Market | ESGMB00 | ESGMAyy | ESGMByy | ESGMCyy | ESGMDyy | ESGMEyy | ESGMFyy | ESGMGyy | ESGMHyy | ESGMIyy | ESGMJyy | ESGMKyy | ESGMLyy | | PJM Rockland Electric Zone Opk | Proxy | EJROB00 | EJROAyy | EJROByy | EJROCyy | EJRODyy | EJROEyy | EJROFyy | EJROGyy | EJROHyy | EJROIyy | ЕЈКОЈуу | EJROKyy | EJROLyy | | PJM Rockland Electric Zone Pk | Proxy | EJRMB00 | EJRMAyy | EJRMByy | EJRMCyy | EJRMDyy | EJRMEyy | EJRMFyy | EJRMGyy | EJRMHyy | EJRMIyy | ЕЈКМЈуу | EJRMKyy | EJRMLyy | | PJM Western Hub Opk | Market | ЕРЈОВОО | ЕРЈОАуу | ЕРЈОВуу | ЕРЈОСуу | EРJ0Dуу | ЕРЈ0Еуу | ЕРЈОГуу | EPJ0Gyy | ЕРЈОНуу | ЕРЈОЈуу | ЕРЈОЈуу | ЕРЈОКуу | EPJ0Lyy | | PJM Western Hub Pk | Market | ЕРЈМВ00 | ЕРЈМАуу | ЕРЈМВуу | ЕРЈМСуу | ЕРЈМДуу | ЕРЈМЕуу | ЕРЈМҒуу | EPJMGyy | ЕРЈМНуу | EPJMIyy | ЕРЈМЈуу | ЕРЈМКуу | EPJMLyy | ^{*} The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENMBA17. # M2MS-POWER PJM/MISO REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | BOM | January | February | March | April | May | June | July | August | September | October | November | December | |-----------------------|--------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|---------|----------|----------| | PJM AD Hub Opk | Market | EECQB00 | EECQAyy | EECQByy | EECQCyy | EECQDyy | EECQEyy | EECQFyy | EECQGyy | EECQHyy | EECQIyy | EECQJyy | EECQKyy | EECQLyy | | PJM AD Hub Pk | Market | EECPB00 | EECPAyy | ЕЕСРВуу | EECPCyy | EECPDyy | EECPEyy | EECPFyy | EECPGyy | EECPHyy | EECPIyy | ЕЕСРЈуу | EECPKyy | EECPLyy | | MISO Indiana Opk | Market | ECIQB00 | ECIQAyy | ECIQByy | ECIQCyy | ECIQDyy | ECIQEyy | ECIQFyy | ECIQGyy | ECIQHyy | ECIQIyy | ECIQJyy | ECIQKyy | ECIQLyy | | MISO Indiana Pk | Market | ECIPB00 | ECIPAyy | ECIPByy | ECIPCyy | ECIPDyy | ECIPEyy | ECIPFyy | ECIPGyy | ECIPHyy | ECIPIyy | ЕСІРЈуу | ECIPKyy | ECIPLyy | | Michigan Opk | Market | EMIQB00 | EMIQAyy | EMIQByy | EMIQCyy | EMIQDyy | EMIQEyy | EMIQFyy | EMIQGyy | EMIQHyy | EMIQIyy | EMIQJyy | EMIQKyy | EMIQLyy | | Michigan Pk | Market | EMIPB00 | EMIPAyy | EMIPByy | EMIPCyy | EMIPDyy | EMIPEyy | EMIPFyy | EMIPGyy | EMIPHyy | EMIPIyy | ЕМІРЈуу | EMIPKyy | EMIPLyy | | Minn Hub Opk | Market | EPMQB00 | EPMQAyy | EPMQByy | EPMQCyy | EPMQDyy | EPMQEyy | EPMQFyy | EPMQGyy | EPMQHyy | EPMQIyy | EPMQJyy | EPMQKyy | EPMQLyy | | Minn Hub Pk | Market | EPMPB00 | EPMPAyy | ЕРМРВуу | EPMPCyy | EPMPDyy | EPMPEyy | EPMPFyy | EPMPGyy | EPMPHyy | EPMPIyy | ЕРМРЈуу | EPMPKyy | EPMPLyy | | MISO Arkansas Hub Opk | Market | EMADB00 | EMADAyy | EMADByy | EMADCyy | EMADDyy | EMADEyy | EMADFyy | EMADGyy | EMADHyy | EMADIyy | EMADJyy | EMADKyy | EMADLyy | | MISO Arkansas Hub Pk | Market | EMABB00 | EMABAyy | EMABByy | EMABCyy | EMABDyy | EMABEyy | EMABFyy | EMABGyy | EMABHyy | EMABIyy | ЕМАВЈуу | EMABKyy | EMABLyy | # M2MS-POWER PJM/MISO REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |-----------------------|-------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|---------|----------|----------| | MISO Illinois Hub Opk | Market | EILDB00 | EILDAyy | EILDByy | EILDCyy | EILDDyy | EILDEyy | EILDFyy | EILDGyy | EILDHyy | EILDIyy | EILDJyy | EILDKyy | EILDLyy | | MISO Illinois Hub Pk | Market | EILBB00 | EILBAyy | EILBByy | EILBCyy | EILBDyy | EILBEyy | EILBFyy | EILBGyy | EILBHyy | EILBIyy | EILBJyy | EILBKyy | EILBLyy | | MISO Louisiana Opk | Market | EMLDB00 | EMLDAyy | EMLDByy | EMLDCyy | EMLDDyy | EMLDEyy | EMLDFyy | EMLDGyy | EMLDHyy | EMLDIyy | EMLDJyy | EMLDKyy | EMLDLyy | | MISO Louisiana Pk | Market | EMLBB00 | EMLBAyy | EMLBByy | EMLBCyy | EMLBDyy | EMLBEyy | EMLBFyy | EMLBGyy | EMLBHyy | EMLBIyy | ЕМLВЈуу | EMLBKyy | EMLBLyy | | MISO Texas Hub Opk | Market | EMEDB00 | EMEDAyy | EMEDByy | EMEDCyy | EMEDDyy | EMEDEyy | EMEDFyy | EMEDGyy | EMEDHyy | EMEDIyy | ЕМЕДЛУУ | EMEDKyy | EMEDLyy | | MISO Texas Hub Pk | Market | EMEBB00 | EMEBAyy | EMEBByy | EMEBCyy | EMEBDyy | EMEBEyy | EMEBFyy | EMEBGyy | EMEBHyy | EMEBIyy | ЕМЕВЈуу | EMEBKyy | EMEBLyy | | PJM NI Hub Opk | Market | ECEQB00 | ECEQAyy | ECEQByy | ECEQCyy | ECEQDyy | ECEQEyy | ECEQFyy | ECEQGyy | ECEQHyy | ECEQIyy | ECEQJyy | ECEQKyy | ECEQLyy | | PJM NI Hub Pk | Market | ECEPB00 | ECEPAyy | ЕСЕРВуу | ECEPCyy | ECEPDyy | ECEPEyy | ECEPFyy | ECEPGyy | ECEPHyy | ECEPIyy | ЕСЕРЈуу | ЕСЕРКуу | ECEPLyy | | PJM AECO Opk | Market | EJADB00 | EJADAyy | EJADByy | EJADCyy | EJADDyy | EJADEyy | EJADFyy | EJADGyy | ЕЈАДНуу | EJADIyy | ЕЈАРЈуу | EJADKyy | EJADLyy | | PJM AECO Pk | Market | EJABB00 | ЕЈАВАуу | ЕЈАВВуу | ЕЈАВСуу | EJABDyy | ЕЈАВЕуу | EJABFyy | EJABGyy | ЕЈАВНуу | EJABIyy | ЕЈАВЈуу | ЕЈАВКуу | EJABLyy | | PJM AEP Opk | Market | EJEQB00 | EJEQAyy | ЕЈЕQВуу | EJEQCyy | EJEQDyy | EJEQEyy | EJEQFyy | EJEQGyy | ЕЈЕОНуу | EJEQIyy | ЕЈЕQЈуу | EJEQKyy | EJEQLyy | | PJM AEP Pk | Market | ЕЈЕРВОО | ЕЈЕРАуу | ЕЈЕРВуу | ЕЈЕРСуу | EJEPDyy | ЕЈЕРЕуу | EJEPFyy | EJEPGyy | ЕЈЕРНуу | EJEPIyy | ЕЈЕРЈуу | ЕЈЕРКуу | EJEPLyy | | PJM APS Opk | Market | EJSDB00 | EJSDAyy | EJSDByy | EJSDCyy | EJSDDyy | EJSDEyy | EJSDFyy | EJSDGyy | EJSDHyy | EJSDIyy | EJSDJyy | EJSDKyy | EJSDLyy | | PJM APS Pk | Market | EJSBB00 | EJSBAyy | EJSBByy | EJSBCyy | EJSBDyy | EJSBEyy | EJSBFyy | EJSBGyy | EJSBHyy | EJSBIyy | ЕЈЅВЈуу | EJSBKyy | EJSBLyy | | PJM ATSI Opk | Market | EJTQB00 | EJTQAyy | EJTQByy | EJTQCyy | EJTQDyy | EJTQEyy | EJTQFyy | EJTQGyy | ЕЈТОНуу | EJTQIyy | ЕЈТQЈуу | EJTQKyy | EJTQLyy | | PJM ATSI Pk | Market | ЕЈТРВ00 | ЕЈТРАуу | ЕЈТРВуу | ЕЈТРСуу | EJTPDyy | ЕЈТРЕуу | EJTPFyy | EJTPGyy | ЕЈТРНуу | EJTPIyy | ЕЈТРЈуу | ЕЈТРКуу | EJTPLyy | | PJM BGE Zone Opk | Market | EBGQB00 | EBGQAyy | EBGQByy | EBGQCyy | EBGQDyy | EBGQEyy | EBGQFyy | EBGQGyy | EBGQHyy | EBGQIyy | EBGQJyy | EBGQKyy | EBGQLyy | | PJM BGE Zone Pk | Market | EBGPB00 | EBGPAyy | EBGPByy | EBGPCyy | EBGPDyy | EBGPEyy | EBGPFyy | EBGPGyy | EBGPHyy | EBGPIyy | EBGPJyy | EBGPKyy | EBGPLyy | | PJM ComEd Opk | Market | EJODB00 | EJODAyy | EJODByy | EJODCyy | EJODDyy | EJODEyy | EJODFyy | EJODGyy | ЕЈОРНуу | EJODIyy | ЕЈОЈЈуу | EJODKyy | EJODLyy | | PJM ComEd Pk | Market | EJOBB00 | ЕЈОВАуу | ЕЈОВВуу | ЕЈОВСуу | EJOBDyy | ЕЈОВЕуу | EJOBFyy | EJOBGyy | ЕЈОВНуу | ЕЈОВІуу | ЕЈОВЈуу | ЕЈОВКуу | EJOBLyy | | PJM DEOK Opk | Market | EJKQB00 | EJKQAyy | EJKQByy | EJKQCyy | EJKQDyy | EJKQEyy | EJKQFyy | EJKQGyy | EJKQHyy | EJKQIyy | ЕЈКQЈуу | EJKQKyy | EJKQLyy | | PJM DEOK Pk | Market |
ЕЈКРВ00 | ЕЈКРАуу | ЕЈКРВуу | ЕЈКРСуу | EJKPDyy | ЕЈКРЕуу | EJKPFyy | EJKPGyy | ЕЈКРНуу | EJKPIyy | ЕЈКРЈуу | ЕЈКРКуу | EJKPLyy | | PJM DPL Opk | Market | EJDDB00 | EJDDAyy | EJDDByy | EJDDCyy | EJDDDyy | EJDDEyy | EJDDFyy | EJDDGyy | EJDDHyy | EJDDIyy | ЕЈДДЈуу | EJDDKyy | EJDDLyy | | PJM DPL Pk | Market | EJDBB00 | EJDBAyy | EJDBByy | EJDBCyy | EJDBDyy | EJDBEyy | EJDBFyy | EJDBGyy | EJDBHyy | EJDBIyy | ЕЈДВЈуу | EJDBKyy | EJDBLyy | | PJM Duquesne Opk | Market | EJUDB00 | EJUDAyy | EJUDByy | EJUDCyy | EJUDDyy | EJUDEyy | EJUDFyy | EJUDGyy | EJUDHyy | EJUDIyy | EJUDJyy | EJUDKyy | EJUDLyy | | PJM Duquesne Pk | Market | EJUBB00 | EJUBAyy | EJUBByy | EJUBCyy | EJUBDyy | EJUBEyy | EJUBFyy | EJUBGyy | EJUBHyy | EJUBIyy | ЕЈИВЈуу | EJUBKyy | EJUBLyy | | PJM Eastern Hub Opk | Market | EPEQB00 | EPEQAyy | EPEQByy | EPEQCyy | EPEQDyy | EPEQEyy | EPEQFyy | EPEQGyy | EPEQHyy | EPEQIyy | ЕРЕQЈуу | EPEQKyy | EPEQLyy | | PJM Eastern Hub Pk | Market | EPEPB00 | EPEPAyy | ЕРЕРВуу | EPEPCyy | EPEPDyy | EPEPEyy | EPEPFyy | EPEPGyy | ЕРЕРНуу | EPEPIyy | ЕРЕРЈуу | ЕРЕРКуу | EPEPLyy | | PJM FE Ohio Opk | Market | EJHQB00 | EJHQAyy | EJHQByy | EJHQCyy | EJHQDyy | EJHQEyy | EJHQFyy | EJHQGyy | EJHQHyy | EJHQIyy | ЕЈНQЈуу | EJHQKyy | EJHQLyy | | PJM FE Ohio Pk | Market | EJHPB00 | ЕЈНРАуу | ЕЈНРВуу | ЕЈНРСуу | EJHPDyy | ЕЈНРЕуу | ЕЈНРҒуу | EJHPGyy | ЕЈНРНуу | EJHPIyy | ЕЈНРЈуу | ЕЈНРКуу | EJHPLyy | | PJM JPCL Zone Opk | Market | EJCQB00 | EJCQAyy | ЕЈСОВуу | EJCQCyy | EJCQDyy | EJCQEyy | EJCQFyy | EJCQGyy | EJCQHyy | EJCQIyy | EJCQJyy | EJCQKyy | EJCQLyy | | PJM JPCL Zone Pk | Market | ЕЈСРВ00 | EJCPAyy | ЕЈСРВуу | ЕЈСРСуу | EJCPDyy | ЕЈСРЕуу | EJCPFyy | EJCPGyy | ЕЈСРНуу | EJCPIyy | ЕЈСРЈуу | ЕЈСРКуу | EJCPLyy | | PJM METED Opk | Market | EJMDB00 | EJMDAyy | EJMDByy | EJMDCyy | EJMDDyy | EJMDEyy | EJMDFyy | EJMDGyy | ЕЈМДНуу | EJMDIyy | ЕЈМОЈуу | EJMDKyy | EJMDLyy | | PJM METED Pk | Market | EJMBB00 | ЕЈМВАуу | ЕЈМВВуу | ЕЈМВСуу | EJMBDyy | ЕЈМВЕуу | ЕЈМВҒуу | EJMBGyy | ЕЈМВНуу | EJMBIyy | ЕЈМВЈуу | ЕЈМВКуу | EJMBLyy | | PJM PECO Zone Opk | Market | EPCQB00 | EPCQAyy | EPCQByy | EPCQCyy | EPCQDyy | EPCQEyy | EPCQFyy | EPCQGyy | EPCQHyy | EPCQIyy | EPCQJyy | EPCQKyy | EPCQLyy | | PJM PECO Zone Pk | Market | EPCPB00 | EPCPAyy | ЕРСРВуу | EPCPCyy | EPCPDyy | EPCPEyy | EPCPFyy | EPCPGyy | ЕРСРНуу | EPCPIyy | ЕРСРЈуу | ЕРСРКуу | EPCPLyy | | PJM PENELEC Opk | Market | EJNDB00 | EJNDAyy | EJNDByy | EJNDCyy | EJNDDyy | EJNDEyy | EJNDFyy | EJNDGyy | EJNDHyy | EJNDIyy | EJNDJyy | EJNDKyy | EJNDLyy | #### M2MS-POWER PJM/MISO REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | BOM | January | February | March | April | May | June | July | August | September | October | November | December | |--------------------------------|--------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|---------|----------|----------| | PJM PENELEC Pk | Market | EJNBB00 | EJNBAyy | EJNBByy | EJNBCyy | EJNBDyy | EJNBEyy | EJNBFyy | EJNBGyy | EJNBHyy | EJNBIyy | EJNBJyy | EJNBKyy | EJNBLyy | | PJM PEPCO Zone Opk | Market | EPPQB00 | EPPQAyy | EPPQByy | EPPQCyy | EPPQDyy | EPPQEyy | EPPQFyy | EPPQGyy | EPPQHyy | EPPQIyy | ЕРРQЈуу | EPPQKyy | EPPQLyy | | PJM PEPCO Zone Pk | Market | EPPPB00 | EPPPAyy | EPPPByy | EPPPCyy | EPPPDyy | EPPPEyy | EPPPFyy | EPPPGyy | ЕРРРНуу | EPPPIyy | ЕРРРЈуу | ЕРРРКуу | EPPPLyy | | PJM PPL Zone Opk | Market | EPLQB00 | EPLQAyy | EPLQByy | EPLQCyy | EPLQDyy | EPLQEyy | EPLQFyy | EPLQGyy | EPLQHyy | EPLQIyy | EPLQJyy | EPLQKyy | EPLQLyy | | PJM PPL Zone Pk | Market | EPLPB00 | EPLPAyy | EPLPByy | EPLPCyy | EPLPDyy | EPLPEyy | EPLPFyy | EPLPGyy | EPLPHyy | EPLPIyy | ЕРЬРЈуу | EPLPKyy | EPLPLyy | | PJM PSEG Zone Opk | Market | ESGQB00 | ESGQAyy | ESGQByy | ESGQCyy | ESGQDyy | ESGQEyy | ESGQFyy | ESGQGyy | ESGQHyy | ESGQIyy | ESGQJyy | ESGQKyy | ESGQLyy | | PJM PSEG Zone Pk | Market | ESGPB00 | ESGPAyy | ESGPByy | ESGPCyy | ESGPDyy | ESGPEyy | ESGPFyy | ESGPGyy | ESGPHyy | ESGPIyy | ESGPJyy | ESGPKyy | ESGPLyy | | PJM Rockland Electric Zone Opk | Proxy | EJRQB00 | EJRQAyy | EJRQByy | EJRQCyy | EJRQDyy | EJRQEyy | EJRQFyy | EJRQGyy | EJRQHyy | EJRQIyy | EJRQJyy | EJRQKyy | EJRQLyy | | PJM Rockland Electric Zone Pk | Proxy | EJRPB00 | EJRPAyy | EJRPByy | EJRPCyy | EJRPDyy | EJRPEyy | EJRPFyy | EJRPGyy | EJRPHyy | EJRPIyy | ЕЈПРЈуу | EJRPKyy | EJRPLyy | | PJM Western Hub Opk | Market | ЕРЈQВ00 | ЕРЈQАуу | EPJQByy | ЕРЈQСуу | EPJQDyy | ЕРЈОЕуу | EPJQFyy | EPJQGyy | ЕРЈОНуу | EPJQIyy | ЕРЈQЈуу | EPJQKyy | EPJQLyy | | PJM Western Hub Pk | Market | ЕРЈРВ00 | ЕРЈРАуу | ЕРЈРВуу | ЕРЈРСуу | EPJPDyy | ЕРЈРЕуу | ЕРЈРҒуу | EPJPGyy | ЕРЈРНуу | ЕРЈРІуу | ЕРЈРЈуу | ЕРЈРКуу | EPJPLyy | ^{*} The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENBBA17. #### PJM/MISO #### Michigan MISO Michigan Hub is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by Midwest ISO on their website www.misoenergy.com. #### MISO Arkansas Hub MISO Arkansas Hub is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by Midwest ISO on their website www.misoenergy.com. #### MISO Illinois Hub MISO Illinois Hub is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by Midwest ISO on their website www.misoenergy.com. #### MISO Indiana Hub MISO Indiana Hub is based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by Midwest ISO on their website www.misoenergy.com. #### MISO Louisiana Hub MISO Louisiana Hub is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by Midwest ISO on their website www.misoenergy.com. #### MISO Minn Hub MISO Minn Hub is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by Midwest ISO on their website www.misoenergy.com. #### MISO Texas Hub MISO Texas Hub is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by Midwest ISO on their website www.misoenergy.com. #### PJM Rockland Electric Zone Includes Rockland Electric Company's Eastern Division in Bergen County, NJ. Rockland's Eastern Division serves about 400 megawatts of load. It does not include any generating capacity. The division is directly interconnected with facilities controlled by PJM through a 345-kilovolt transmission line. www.pim.com #### PJM AD Hub PJM AD Hub is based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by PJM on their website www.pjm.com. #### PJM AECO PJM AECO is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pjm.com. #### PJM AEP PJM AEP is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM APS PJM APS is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM ATSI PJM ATSI is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM BGE Zone PJM BGE Zone is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM ComEd PJM ComEd is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pjm.com. #### PJM DEOK PJM DEOK is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM DPL PJM DPL is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM Duquesne PJM Duquesne is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pjm.com. #### PJM Eastern Hub PJM Eastern Hub is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pjm.com. #### PJM FE Ohio PJM FE Ohio is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pjm.com. #### PJM JCPL Zone PJM JCPL Zone is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM METED PJM METED is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM NI Hub PJM NI Hub is based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by PJM on their website www.pjm.com. #### PJM PECO Zone PJM PECO Zone is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pjm.com. #### PJM PENELEC PJM PENELEC is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM PEPCO Zone PJM PEPCO Zone is based on the
on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pjm.com. #### PJM PPL Zone PJM PPL Zone is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM PSEG Zone PJM PSEG Zone is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by PJM on their website www.pim.com. #### PJM Western Hub PJM Western Hub is based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by PJM on their website www.pim.com. # M2MS-POWER SOUTHEAST REGION SYMBOLS FOR 10 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |-------------------|--------------------------|---------|---------|----------|----------------|---------|----------------|---------|---------|----------------|-----------|---------|----------|----------| | Florida Opk | Proxy | EFLOB00 | EFLOAyy | EFLOByy | EFL0Cyy | EFLODyy | EFLOEyy | EFLOFyy | EFLOGyy | EFLOHyy | EFLOIyy | EFL0Jyy | EFLOKyy | EFLOLyy | | Florida Pk | Proxy | EFLMB00 | EFLMAyy | EFLMByy | EFLMCyy | EFLMDyy | EFLMEyy | EFLMFyy | EFLMGyy | EFLMHyy | EFLMIyy | EFLMJyy | EFLMKyy | EFLMLyy | | Into TVA Opk | Proxy | ETVCB00 | ETVCAyy | ETVCByy | ETVCCyy | ETVCDyy | ETVCEyy | ETVCFyy | ETVCGyy | ETVCHyy | ETVCIyy | ETVCJyy | ETVCKyy | ETVCLyy | | Into TVA Pk | Proxy | ETVAB00 | ETVAAyy | ETVAByy | ETVACyy | ETVADyy | ETVAEyy | ETVAFyy | ETVAGyy | ETVAHyy | ETVAIyy | ETVAJyy | ETVAKyy | ETVALyy | | Into Southern Opk | Proxy | ESTOB00 | EST0Ayy | ESTOByy | EST0Cyy | ESTODyy | EST0Eyy | EST0Fyy | EST0Gyy | EST0Hyy | EST0Iyy | ЕЅТОЈуу | EST0Kyy | ESTOLyy | | Into Southern Pk | Proxy | ESTMB00 | ESTMAyy | ESTMByy | ESTMCyy | ESTMDyy | ESTMEyy | ESTMFyy | ESTMGyy | ESTMHyy | ESTMIyy | ESTMJyy | ESTMKyy | ESTMLyy | | Vacar Opk | Proxy | ESVOB00 | ESV0Ayy | ESVOByy | ESV0Cyy | ESVODyy | ESV0Eyy | ESV0Fyy | ESV0Gyy | ESV0Hyy | ESV0Iyy | ESV0Jyy | ESV0Kyy | ESV0Lyy | | Vacar Pk | Proxy | ESVMB00 | ESVMAyy | ESVMByy | ESVMCyy | ESVMDyy | ESVMEyy | ESVMFyy | ESVMGyy | ESVMHyy | ESVMIyy | ESVMJyy | ESVMKyy | ESVMLyy | | SPP North Opk | Market | ESNOB00 | ESNOAyy | ESNOByy | ESNOCyy | ESNODyy | ESN0Eyy | ESNOFyy | ESNOGyy | ESNOHyy | ESNOIyy | ESNOJyy | ESNOKyy | ESNOLyy | | SPP North Pk | Market | ESNMB00 | ESNMAyy | ESNMByy | ESNMCyy | ESNMDyy | ESNMEyy | ESNMFyy | ESNMGyy | ESNMHyy | ESNMIyy | ESNMJyy | ESNMKyy | ESNMLyy | | SPP South Opk | Market | ESWOB00 | ESWOAyy | ESWOByy | ESW0Cyy | ESWODyy | ESW0Eyy | ESWOFyy | ESWOGyy | ESWOHyy | ESWOIyy | ESWOJyy | ESWOKyy | ESWOLyy | | SPP South Pk | Market | ESWMB00 | ESWMAyy | ESWMByy | ESWMCyy | ESWMDyy | ESWMEyy | ESWMFyy | ESWMGyy | ESWMHyy | ESWMIyy | ESWMJyy | ESWMKyy | ESWMLyy | ^{*}The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENMBA17. # M2MS-POWER SOUTHEAST REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | BOM | January | February | Mərch | April | May | June | July | August | September | October | November | December | |-------------------|-------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|---------|----------|----------| | Florida Opk | Proxy | EFLQB00 | EFLQAyy | EFLQByy | EFLQCyy | EFLQDyy | EFLQEyy | EFLQFyy | EFLQGyy | EFLQHyy | EFLQIyy | EFLQJyy | EFLQKyy | EFLQLyy | | Florida Pk | Proxy | EFLPB00 | EFLPAyy | EFLPByy | EFLPCyy | EFLPDyy | EFLPEyy | EFLPFyy | EFLPGyy | EFLPHyy | EFLPIyy | EFLPJyy | EFLPKyy | EFLPLyy | | Into TVA Opk | Proxy | ETVDB00 | ETVDAyy | ETVDByy | ETVDCyy | ETVDDyy | ETVDEyy | ETVDFyy | ETVDGyy | ETVDHyy | ETVDIyy | ETVDJyy | ETVDKyy | ETVDLyy | | Into TVA Pk | Proxy | ETVBB00 | ETVBAyy | ETVBByy | ETVBCyy | ETVBDyy | ETVBEyy | ETVBFyy | ETVBGyy | ETVBHyy | ETVBIyy | ЕТVВЈуу | ETVBKyy | ETVBLyy | | Into Southern Opk | Proxy | ESTQB00 | ESTQAyy | ESTQByy | ESTQCyy | ESTQDyy | ESTQEyy | ESTQFyy | ESTQGyy | ESTQHyy | ESTQIyy | ESTQJyy | ESTQKyy | ESTQLyy | | Into Southern Pk | Proxy | ESTPB00 | ESTPAyy | ESTPByy | ESTPCyy | ESTPDyy | ESTPEyy | ESTPFyy | ESTPGyy | ESTPHyy | ESTPIyy | ESTPJyy | ESTPKyy | ESTPLyy | | Vacar Opk | Proxy | ESVQB00 | ESVQAyy | ESVQByy | ESVQCyy | ESVQDyy | ESVQEyy | ESVQFyy | ESVQGyy | ESVQHyy | ESVQIyy | ESVQJyy | ESVQKyy | ESVQLyy | | Vacar Pk | Proxy | ESVPB00 | ESVPAyy | ESVPByy | ESVPCyy | ESVPDyy | ESVPEyy | ESVPFyy | ESVPGyy | ESVPHyy | ESVPIyy | ESVPJyy | ESVPKyy | ESVPLyy | | SPP North Opk | Market | ESNQB00 | ESNQAyy | ESNQByy | ESNQCyy | ESNQDyy | ESNQEyy | ESNQFyy | ESNQGyy | ESNQHyy | ESNQIyy | ESNQJyy | ESNQKyy | ESNQLyy | | SPP North Pk | Market | ESNPB00 | ESNPAyy | ESNPByy | ESNPCyy | ESNPDyy | ESNPEyy | ESNPFyy | ESNPGyy | ESNPHyy | ESNPIyy | ESNPJyy | ESNPKyy | ESNPLyy | | SPP South Opk | Market | ESWQB00 | ESWQAyy | ESWQByy | ESWQCyy | ESWQDyy | ESWQEyy | ESWQFyy | ESWQGyy | ESWQHyy | ESWQIyy | ESWQJyy | ESWQKyy | ESWQLyy | | SPP South Pk | Market | ESWPB00 | ESWPAyy | ESWPByy | ESWPCyy | ESWPDyy | ESWPEyy | ESWPFyy | ESWPGyy | ESWPHyy | ESWPIyy | ESWPJyy | ESWPKyy | ESWPLyy | | | | | | | | | | | | | | | | | ^{*} The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENMBA17. #### **SOUTHEAST REGION** #### Florida The Florida instate pricing area comprises control areas within the State of Florida or the Florida Reliability Coordination Council (FRPCC), excluding Gulf Power, which is part of the Southern Company control area. Florida control areas include: Progress Energy Florida, Florida Power & Light Company, Tampa Electric Company, Florida Municipal Power Agency, Gainesville Regional Utilities, JEA, City of Lakeland, Orlando Utilities Commission, City of Tallahassee and Seminole Electric Cooperative. #### Into Southern Into Southern comprises power delivered to an interface with or a delivery point within the Southern Company control area, which spans a swath of SERC from Georgia to Mississippi including a portion of the Florida pan handle. (Control area for purposes of this location description is defined to exclude any other entity's transmission system for which the utility acts as the balancing authority.) #### Into TVA Into TVA comprises power delivered to an interface with or a delivery point within the control area of the Tennessee Valley Authority, which includes Tennessee and the northern portion of Alabama. (Control area for the purposes of this location description is defined to exclude any other entity's system for which TVA acts as the balancing authority.) #### SPP North SPP North is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by SPP on their website www.spp.org. #### SPP South SPP South is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by SPP on their website www.spp.org. #### VACAR VACAR comprises the control areas in the Virginia and Carolinas subregion of the Southeastern Electric Reliability Council, including: Progress Energy's Carolina Power and Light east and west, Duke(?), South Carolina Electric and Gas, Santee Cooper, Southeastern Power Administration and APGI Yadkin Division. Dominion's Virginia Power control area has been excluded since it joined the PJM interconnection on May 1, 2005. #### M2MS-POWER ERCOT REGION SYMBOLS FOR 10 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | BOM | January | February | March | April | May | June | July | August | September | October | November | December | |-----------------------|--------------------------|---------|------------------|----------|----------|-----------|---------------|---------|----------|----------------|-----------|----------|----------|---------------| | ERCOT Houston Hub Opk | Market | ETSOB00 | ETS0Ayy | ETSOByy | ETS0Cyy | ETSODyy | ETS0Eyy | ETS0Fyy | ETS0Gyy | ETS0Hyy | ETSOIyy | ЕТЅОЈуу | ETS0Kyy | ETS0Lyy | | ERCOT Houston Hub Pk | Market | ETSMB00 | ETSMAyy | ETSMByy | ETSMCyy | ETSMDyy | ETSMEyy | ETSMFyy | ETSMGyy | ETSMHyy | ETSMIyy | ETSMJyy | ETSMKyy | ETSMLyy | | ERCOT North Hub Opk | Market | ETNOB00 | ETNOAyy | ETNOByy | ETNOCyy | ETNODyy | ETNOEyy | ETNOFyy | ETNOGyy | ETNOHyy | ETNOIyy | ETNOJyy | ETNOKyy | ETNOLyy | | ERCOT North Hub Pk | Market | ETNMB00 | ETNMAyy | ETNMByy | ETNMCyy | ETNMDyy | ETNMEyy | ETNMFyy | ETNMGyy | ETNMHyy | ETNMIyy | ЕТММЈуу | ETNMKyy | ETNMLyy | | ERCOT South Hub Opk | Market | ETHOB00 | ETH0Ayy | ETHOByy | ETHOCyy | ETHODyy | ETH0Eyy | ETH0Fyy | ETHOGyy | ETHOHyy | ETHOIyy | ЕТНОЈуу | ETH0Kyy | ETHOLyy | | ERCOT South Hub Pk | Market | ETHMB00 | ETHMAyy | ETHMByy | ETHMCyy | ETHMDyy | ETHMEyy | ETHMFyy | ETHMGyy | ETHMHyy | ETHMIyy | ЕТНМЈуу | ETHMKyy | ETHMLyy | | ERCOT West Hub Opk | Market | ETWOB00 | ETWOAyy | ETWOByy | ETWOCyy | ETWODyy | ETW0Eyy | ETWOFyy | ETWOGyy | ETWOHyy | ETWOIyy | ЕТѠѺЈуу | ETWOKyy | ETWOLyy | | ERCOT West Hub Pk | Market | ETWMB00 | ETWMAyy | ETWMByy | ETWMCyy | ETWMDyy | ETWMEyy | ETWMFyy | ETWMGyy | ETWMHyy | ETWMIyy | ETWMJyy | ETWMKyy | ETWMLyy | | EROOT WEST HAST R | Homet | LIMIDOO | L I III II-I y y | Limibyy | Limiteyy | Livilibyy | L 1101 12 y y | yy | Limitoyy | L 1 W II 1 y y | LIMILYY | Limitayy | Limityy | L 1 W 1 L y y | ^{*} The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above
with 17 to make ENMBA17. #### M2MS-POWER ERCOT REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |-----------------------|--------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|---------|----------|----------| | ERCOT Houston Hub Opk | Market | ETSQB00 | ETSQAyy | ETSQByy | ETSQCyy | ETSQDyy | ETSQEyy | ETSQFyy | ETSQGyy | ETSQHyy | ETSQIyy | ETSQJyy | ETSQKyy | ETSQLyy | | ERCOT Houston Hub Pk | Market | ETSPB00 | ETSPAyy | ETSPByy | ETSPCyy | ETSPDyy | ETSPEyy | ETSPFyy | ETSPGyy | ETSPHyy | ETSPIyy | ЕТЅРЈуу | ETSPKyy | ETSPLyy | | ERCOT North Hub Opk | Market | ETNQB00 | ETNQAyy | ETNQByy | ETNQCyy | ETNQDyy | ETNQEyy | ETNQFyy | ETNQGyy | ETNQHyy | ETNQIyy | ETNQJyy | ETNQKyy | ETNQLyy | | ERCOT North Hub Pk | Market | ETNPB00 | ETNPAyy | ETNPByy | ETNPCyy | ETNPDyy | ETNPEyy | ETNPFyy | ETNPGyy | ETNPHyy | ETNPIyy | ЕТПРЈуу | ETNPKyy | ETNPLyy | | ERCOT South Hub Opk | Market | ETHQB00 | ETHQAyy | ETHQByy | ETHQCyy | ETHQDyy | ETHQEyy | ETHQFyy | ETHQGyy | ETHQHyy | ETHQIyy | ETHQJyy | ETHQKyy | ETHQLyy | | ERCOT South Hub Pk | Market | ETHPB00 | ETHPAyy | ETHPByy | ETHPCyy | ETHPDyy | ETHPEyy | ETHPFyy | ETHPGyy | ETHPHyy | ETHPIyy | ЕТНРЈуу | ETHPKyy | ETHPLyy | | ERCOT West Hub Opk | Market | ETWQB00 | ETWQAyy | ETWQByy | ETWQCyy | ETWQDyy | ETWQEyy | ETWQFyy | ETWQGyy | ETWQHyy | ETWQIyy | ETWQJyy | ETWQKyy | ETWQLyy | | ERCOT West Hub Pk | Market | ETWPB00 | ETWPAyy | ETWPByy | ETWPCyy | ETWPDyy | ETWPEyy | ETWPFyy | ETWPGyy | ETWPHyy | ETWPIyy | ЕТWРЈуу | ETWPKyy | ETWPLyy | ^{*}The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENMBA17. #### **ERCOT REGION** #### **ERCOT Houston Hub** ERCOT's Houston aggregate nodal trading hub, based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by ERCOT on their website www.ercot.com. #### **ERCOT North Hub** ERCOT's North aggregate nodal trading hub, based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by ERCOT on their website www.ercot.com. #### **ERCOT South Hub** ERCOT's South aggregate nodal trading hub, based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by ERCOT on their website www.ercot.com. #### **ERCOT West Hub** ERCOT's West aggregate nodal trading hub, based on the on peak and off peak mathematical averages of the hourly real time LMP prices published by ERCOT on their website www.ercot.com. # M2MS-POWER WEST REGION SYMBOLS FOR 10 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | вом | January | February | March | April | May | June | July | August | September | October | November | December | |-------------------------------|--------------------------|---------|---------|----------|---------|----------------|----------------|----------------|----------------|---------|-----------|---------|----------|----------------| | Alberta Opk | Market | EALOB00 | EALOAyy | EALOByy | EALOCyy | EALODyy | EALOEyy | EALOFyy | EALOGyy | EALOHyy | EALOIyy | EALOJyy | EALOKyy | EALOLyy | | Alberta Pk | Market | EALMB00 | EALMAyy | EALMByy | EALMCyy | EALMDyy | EALMEyy | EALMFyy | EALMGyy | EALMHyy | EALMIyy | EALMJyy | EALMKyy | EALMLyy | | Calif-Orecon Border Opk | Proxy | EC00B00 | EC00Ayy | EC00Byy | EC00Cyy | EC00Dyy | EC00Eyy | EC00Fyy | EC00Gyy | EC00Hyy | ECOOIyy | ЕСООЈуу | EC00Kyy | EC00Lyy | | Calif-Orecon Border Pk | Proxy | ECOMB00 | ECOMAyy | ECOMByy | ECOMCyy | ECOMDyy | ECOMEyy | ECOMFyy | ECOMGyy | ECOMHyy | ECOMIyy | ЕСОМЈуу | ECOMKyy | ECOMLyy | | East Colorado Opk | Proxy | EWEOB00 | EWEOAyy | EWEOByy | EWEOCyy | EWEODyy | EWEOEyy | EWEOFyy | EWEOGyy | EWEOHyy | EWEOIyy | ЕWЕОЈуу | EWEOKyy | EWEOLyy | | East Colorado Pk | Proxy | EWEMB00 | EWEMAyy | EWEMByy | EWEMCyy | EWEMDyy | EWEMEyy | EWEMFyy | EWEMGyy | EWEMHyy | EWEMIyy | ЕWЕМЈуу | EWEMKyy | EWEMLyy | | Four Corners Opk | Proxy | EFCOB00 | EFC0Ayy | EFCOByy | EFC0Cyy | EFCODyy | EFC0Eyy | EFC0Fyy | EFCOGyy | EFC0Hyy | EFCOIyy | ЕГСОЈуу | EFCOKyy | EFCOLyy | | Four Corners Pk | Proxy | EFCMB00 | EFCMAyy | EFCMByy | EFCMCyy | EFCMDyy | EFCMEyy | EFCMFyy | EFCMGyy | EFCMHyy | EFCMIyy | ЕГСМЈуу | EFCMKyy | EFCMLyy | | Mead Opk | Proxy | EMDOB00 | EMD0Ayy | EMDOByy | EMDOCyy | EMDODyy | EMDOEyy | EMDOFyy | EMDOGyy | EMDOHyy | EMDOIyy | EMDOJyy | EMDOKyy | EMDOLyy | | Mead Pk | Proxy | EMDMB00 | EMDMAyy | EMDMByy | EMDMCyy | EMDMDyy | EMDMEyy | EMDMFyy | EMDMGyy | EMDMHyy | EMDMIyy | EMDMJyy | EMDMKyy | EMDMLyy | | Mid-Columbia Opk | Market | EMCOB00 | EMCOAyy | EMCOByy | EMCOCyy | EMCODyy | EMCOEyy | EMCOFyy | EMCOGyy | EMCOHyy | EMCOIyy | ЕМСОЈуу | EMCOKyy | EMCOLyy | | Mid-Columbia Pk | Market | EMCMB00 | EMCMAyy | EMCMByy | EMCMCyy | EMCMDyy | EMCMEyy | EMCMFyy | EMCMGyy | EMCMHyy | EMCMIyy | ЕМСМЈуу | EMCMKyy | EMCMLyy | | NOB, Nevada-Oregon Border Opk | Proxy | ENOOB00 | ENOOAyy | ENOOByy | EN00Cyy | ENOODyy | ENOOEyy | ENOOFyy | ENOOGyy | EN00Hyy | ENOOIyy | ЕNOOЈуу | ENOOKyy | ENOOLyy | | NOB, Nevada-Oregon Border Pk | Proxy | ENOMB00 | ENOMAyy | ENOMByy | ENOMCyy | ENOMDyy | ENOMEyy | ENOMFyy | ENOMGyy | ENOMHyy | ENOMIyy | ENOMJyy | ENOMKyy | ENOMLyy | | North Path 15 Opk | Market | ENPOB00 | ENPOAyy | ENPOByy | ENPOCyy | ENPODyy | ENPOEyy | ENPOFyy | ENPOGyy | ENPOHyy | ENPOIyy | ЕПРОЈуу | ENPOKyy | ENPOLyy | | North Path 15 Pk | Market | ENPMB00 | ENPMAyy | ENPMByy | ENPMCyy | ENPMDyy | ENPMEyy | ENPMFyy | ENPMGyy | ENPMHyy | ENPMIyy | ЕПРМЈуу | ENPMKyy | ENPMLyy | | Palo Verde Opk | Market | EPVOB00 | EPV0Ayy | EPVOByy | EPVOCyy | EPVODyy | EPV0Eyy | EPVOFyy | EPVOGyy | EPV0Hyy | EPVOIyy | ЕРVОЈуу | EPVOKyy | EPV0Lyy | | Palo Verde Pk | Market | EPVMB00 | EPVMAyy | EPVMByy | EPVMCyy | EPVMDyy | EPVMEyy | EPVMFyy | EPVMGyy | EPVMHyy | EPVMIyy | ЕРVМЈуу | EPVMKyy | EPVMLyy | | Pinnacle Peak Opk | Proxy | EPNOB00 | EPNOAyy | EPNOByy | EPNOCyy | EPNODyy | EPNOEyy | EPNOFyy | EPNOGyy | EPNOHyy | EPNOIyy | ЕРМОЈуу | EPNOKyy | EPNOLyy | | Pinnacle Peak Pk | Proxy | EPNMB00 | EPNMAyy | EPNMByy | EPNMCyy | EPNMDyy | EPNMEyy | EPNMFyy | EPNMGyy | EPNMHyy | EPNMIyy | ЕРММЈуу | EPNMKyy | EPNMLyy | | South Path 15 Opk | Market | ESPOB00 | ESP0Ayy | ESPOByy | ESPOCyy | ESPODyy | ESP0Eyy | ESP0Fyy | ESPOGyy | ESP0Hyy | ESPOIyy | ESPOJyy | ESPOKyy | ESP0Lyy | | South Path 15 Pk | Market | ESPMB00 | ESPMAyy | ESPMByy | ESPMCyy | ESPMDyy | ESPMEyy | ESPMFyy | ESPMGyy | ESPMHyy | ESPMIyy | ЕЅРМЈуу | ESPMKyy | ESPMLyy | | Utah Opk | Proxy | EUTOB00 | EUT0Ayy | EUT0Byy | EUTOCyy | EUTODyy | EUT0Eyy | EUTOFyy | EUTOGyy | EUT0Hyy | EUTOIyy | ЕИТОЈуу | EUTOKyy | EUT0Lyy | | Utah Pk | Proxy | EUTMB00 | EUTMAyy | EUTMByy | EUTMCyy | EUTMDyy | EUTMEyy | EUTMFyy | EUTMGyy | EUTMHyy | EUTMIyy | ЕИТМЈуу | EUTMKyy | EUTMLyy | ^{*} The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENMBA17. # M2MS-POWER WEST REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | BOM | January | February | March | April | May | June | July | August | September | October | November | December | |-------------------------|-------------------|---------|---------|----------|----------------|---------|----------------|----------------|----------------|---------|-----------|---------|----------|----------------| | Alberta Opk | Market | EALQB00 | EALQAyy | EALQByy | EALQCyy | EALQDyy | EALQEyy | EALQFyy | EALQGyy | EALQHyy | EALQIyy | EALQJyy | EALQKyy | EALQLyy | | Alberta Pk | Market | EALPB00 | EALPAyy | EALPByy | EALPCyy | EALPDyy | EALPEyy | EALPFyy | EALPGyy | EALPHyy | EALPIyy | EALPJyy | EALPKyy | EALPLyy | | Calif-Orecon Border Opk | Proxy | ECOQB00 | ECOQAyy | ECOQByy | ECOQCyy | ECOQDyy | ECOQEyy | ECOQFyy | ECOQGyy | ECOQHyy | ECOQIyy | ECOQJyy | ECOQKyy | ECOQLyy | | Calif-Orecon Border Pk | Proxy | ECOPB00 | ECOPAyy | ECOPByy | ECOPCyy | ECOPDyy | ECOPEyy | ECOPFyy | ECOPGyy | ECOPHyy | ECOPIyy | ЕСОРЈуу | ECOPKyy | ECOPLyy | | East Colorado Opk | Proxy | EWEQB00 | EWEQAyy | EWEQByy | EWEQCyy | EWEQDyy | EWEQEyy | EWEQFyy | EWEQGyy | EWEQHyy | EWEQIyy | EWEQJyy | EWEQKyy | EWEQLyy | | East Colorado Pk | Proxy | EWEPB00 | EWEPAyy | EWEPByy | EWEPCyy | EWEPDyy | EWEPEyy | EWEPFyy | EWEPGyy | EWEPHyy | EWEPIyy | ЕШЕРЈуу | EWEPKyy | EWEPLyy | | Four Corners Opk | Proxy | EFCQB00 | EFCQAyy | EFCQByy | EFCQCyy | EFCQDyy | EFCQEyy | EFCQFyy | EFCQGyy | EFCQHyy | EFCQIyy | EFCQJyy | EFCQKyy | EFCQLyy | #### M2MS-POWER WEST REGION SYMBOLS FOR 20 YEAR FORWARD CURVES (BATE CODE:U) | | Location Category | BOM | January | February | March | April | May | June | July | August | September | October | November | December | |-------------------------------|--------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|---------|----------|----------| | Four Corners Pk | Proxy | EFCPB00 | EFCPAyy | EFCPByy | EFCPCyy | EFCPDyy | EFCPEyy | EFCPFyy | EFCPGyy | EFCPHyy | EFCPIyy | ЕГСРЈуу | EFCPKyy | EFCPLyy | | Mead Opk | Proxy | EMDQB00 | EMDQAyy | EMDQByy | EMDQCyy | EMDQDyy | EMDQEyy | EMDQFyy | EMDQGyy | EMDQHyy | EMDQIyy | EMDQJyy | EMDQKyy | EMDQLyy | | Mead Pk | Proxy | EMDPB00 | EMDPAyy | EMDPByy | EMDPCyy | EMDPDyy | EMDPEyy | EMDPFyy | EMDPGyy | EMDPHyy | EMDPIyy | EMDPJyy | EMDPKyy | EMDPLyy | | Mid-Columbia Opk | Market | EMCQB00 | EMCQAyy | EMCQByy | EMCQCyy |
EMCQDyy | EMCQEyy | EMCQFyy | EMCQGyy | EMCQHyy | EMCQIyy | EMCQJyy | EMCQKyy | EMCQLyy | | Mid-Columbia Pk | Market | EMCPB00 | EMCPAyy | EMCPByy | EMCPCyy | EMCPDyy | EMCPEyy | EMCPFyy | EMCPGyy | EMCPHyy | EMCPIyy | ЕМСРЈуу | EMCPKyy | EMCPLyy | | NOB, Nevada-Oregon Border Opk | Proxy | ENOQB00 | ENOQAyy | ENOQByy | ENOQCyy | ENOQDyy | ENOQEyy | ENOQFyy | ENOQGyy | ENOQHyy | ENOQIyy | ENOQJyy | ENOQKyy | ENOQLyy | | NOB, Nevada-Oregon Border Pk | Proxy | ENOPB00 | ENOPAyy | ENOPByy | ENOPCyy | ENOPDyy | ENOPEyy | ENOPFyy | ENOPGyy | ENOOHyy | ENOPIyy | ENOPJyy | ENOPKyy | ENOPLyy | | North Path 15 Opk | Market | ENPQB00 | ENPQAyy | ENPQByy | ENPQCyy | ENPQDyy | ENPQEyy | ENPQFyy | ENPQGyy | ENPQHyy | ENPQIyy | ENPQJyy | ENPQKyy | ENPQLyy | | North Path 15 Pk | Market | ENPPB00 | ENPPAyy | ENPPByy | ENPPCyy | ENPPDyy | ENPPEyy | ENPPFyy | ENPPGyy | ENPPHyy | ENPPIyy | ЕПРРЈуу | ENPPKyy | ENPPLyy | | Palo Verde Opk | Market | EPVQB00 | EPVQAyy | EPVQByy | EPVQCyy | EPVQDyy | EPVQEyy | EPVQFyy | EPVQGyy | EPVQHyy | EPVQIyy | EPVQJyy | EPVQKyy | EPVQLyy | | Palo Verde Pk | Market | EPVPB00 | EPVPAyy | EPVPByy | EPVPCyy | EPVPDyy | EPVPEyy | EPVPFyy | EPVPGyy | EPVPHyy | EPVPIyy | ЕРVРЈуу | EPVPKyy | EPVPLyy | | Pinnacle Peak Opk | Proxy | EPNQB00 | EPNQAyy | EPNQByy | EPNQCyy | EPNQDyy | EPNQEyy | EPNQFyy | EPNQGyy | EPNQHyy | EPNQIyy | EPNQJyy | EPNQKyy | EPNQLyy | | Pinnacle Peak Pk | Proxy | EPNPB00 | EPNPAyy | EPNPByy | EPNPCyy | EPNPDyy | EPNPEyy | EPNPFyy | EPNPGyy | EPNPHyy | EPNPIyy | ЕРПРЈуу | EPNPKyy | EPNPLyy | | South Path 15 Opk | Market | ESPQB00 | ESPQAyy | ESPQByy | ESPQCyy | ESPQDyy | ESPQEyy | ESPQFyy | ESPQGyy | ESPQHyy | ESPQIyy | ESPQJyy | ESPQKyy | ESPQLyy | | South Path 15 Pk | Market | ESPPB00 | ESPPAyy | ESPPByy | ESPPCyy | ESPPDyy | ESPPEyy | ESPPFyy | ESPPGyy | ESPPHyy | ESPPIyy | ESPPJyy | ESPPKyy | ESPPLyy | | Utah Opk | Proxy | EUTQB00 | EUTQAyy | EUTQByy | EUTQCyy | EUTQDyy | EUTQEyy | EUTQFyy | EUTQGyy | EUTQHyy | EUTQIyy | EUTQJyy | EUTQKyy | EUTQLyy | | Utah Pk | Proxy | EUTPB00 | EUTPAyy | EUTPByy | EUTPCyy | EUTPDyy | EUTPEyy | EUTPFyy | EUTPGyy | EUTPHyy | EUTPIyy | ЕИТРЈуу | EUTPKyy | EUTPLyy | ^{*}The symbols in this table are displayed in summation notation. For example, to derive the symbol for ISO-NE NE-Mass Hub Pk January 2017, replace the yy inENMBAyy from the table above with 17 to make ENMBA17. #### **WEST REGION** #### Alberta Alberta is based on the on peak and off peak mathematical averages of the hourly pool prices published by AESO on their website <u>www.aeso.ca</u>. #### California-Oregon Border California-Oregon Border comprises the Captain Jack and Malin substations on the AC transmission system between Oregon and California. #### East Colorado East Colorado is based on power delivered to the DC tie line in Lamar, Colorado. #### **Four Corners** Four Corners comprises the switchyard of the coal-fired Four Corners power plant in Fruitland, New Mexico, located in the Northwestern corner of the state where Arizona, Colorado, New Mexico and Utah meet. #### Mead Mead comprises the switchyard at the Hoover Dam on the Colorado River, forming Lake Mead near Las Vegas, Nevada. #### Mid-Columbia Mid-Columbia is a power trading hub for the Northwest U.S. comprising the control areas of three public utility districts in Washington that run hydro electric projects on the Columbia River. The three PUDs are Grant, Douglas and Chelan. Hydro projects include Wells, Rocky Reach, Rock Island, Wanapum and Priest Rapids dams. #### NOB, Nevada-Oregon Border Nevada-Oregon Border is part of the Pacific DC Intertie that connects the Pacific Northwest directly with Southern California. The DC Intertie connects the Celio DC Converter station near The Dalles, Oregon with the Sylmar substation north of Los Angeles, California. #### North Path 15 North Path 15, or NP 15, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by CAISO on their website www.caiso.com. #### Palo Verde Palo Verde comprises the switchyard at the Palo Verde nuclear power station west of Phoenix, Arizona. #### Pinnacle Peak Pinnacle Peak comprises three substations northeast of Phoenix, Arizona and west of Scottsdale Arizona. The three substations are operated individually by Arizona Public Service, US Bureau of Reclamation Lower Colorado Region and Salt River Project. #### South Path 15 South Path 15, or SP 15, is based on the on peak and off peak mathematical averages of the hourly day ahead LMP prices published by CAISO on their website www.caiso.com. #### Utah Utah, or Mona, comprises the Mona substation in central Utah, directly south of Salt Lake City and linked to major generating units in the region, such as the Intermountain Power Project. # Platts produces heat rate curves for the Power/Gas hub pairs shown below: # POWER/GAS HUB PAIRS | Power Hub Name | Gas Hub 1 | Gas Hub 2 | Gas Hub 3 | Gas Hub 4 | |-------------------------------|-------------------|------------------|-----------------|-----------| | Northeast Region | | | | | | ISO-NE NE-Mass | Algonquin CG | Tenn Zn6 Dlvd | | | | ISO-NE New Hampshire | Algonquin CG | Tenn Zn6 Dlvd | | | | ISO-NE SE-Mass | Algonquin CG | Tenn Zn6 Dlvd | | | | ISONE Vermont Zone | Algonquin CG | Tenn Zn6 Dlvd | | | | ISO-NE W Central Mass | Algonquin CG | Tenn Zn6 Dlvd | | | | NEPOOL Connecticut | Iroquois Zn2 | Tenn Zn6 Dlvd | | | | NEPOOL Mass Hub | Algonquin CG | Tenn Zn6 Dlvd | | | | NEPOOL North | Dracut MA | Iroquois Recpts | | | | NEPOOL RI | Algonquin CG | Tenn Zn6 Dlvd | | | | NY ISO Mohawk Valley Zone (E) | Transco Zn6 NY | TX Eastern M-3 | | | | NY ISO Zone A (West) | Niagara | Dawn Ontario | Iroquois Recpts | | | NY ISO Zone C (Central) | Niagara | Dawn Ontario | | | | NY ISO Zone D (North) | Iroquois Receipts | Tenn Zn6 Dlvd | | | | NY ISO Zone F (Capital) | Transco Zn6 NY | Iroquois Zn2 | | | | NY ISO Zone G (Hudson Val) | Iroquois Zn2 | Transco Zn6 NY | | | | NY ISO Zone J (NYC) | Transco Zn6 NY | TX Eəstern M-3 | | | | NY ISO Zone K (Long Island) | Transco Zn6 NY | | | | | Ontario | Dawn Ontario | | | | | Southeast Region | | | | | | Florida | FL Gas Zn3 | Florida CG | | | | Into Entergy | Henry Hub | CenterPoint E | Texas Gas Zn 1 | TETCO M1 | | Into Southern | Transco Zn4 | FL Gas Zn3 | | | | Into TVA | TETCO M1 | Tenn 100 Leg | | | | SPP North | Nrthrn Ventura | Nrthrn NG Demarc | | | | SPP South | Panhandle TX-0K | Oneok OK | | | | Vacar | Transco Zn5 Dlv | | | | | West Region | | | | | | Alberta | TC Alb AECO-C | | | | | Calif-Oregon Border | PG&E Malin | | | | | East Colorado | CHEYENNE | NW WY Pool/Rky | | | | Four Corners | El Paso SanJuan | | | | | Mead | SoCal Gas | | | | | Mid-Columbia | NW Can Bd Sumas | | | | # **POWER/GAS HUB PAIRS** | FUWER/0A3 HUD FAIRS | | - | | | |-----------------------|-----------------|------------------|---------------|-----------| | Power Hub Name | Gas Hub 1 | Gas Hub 2 | Gas Hub 3 | Gas Hub 4 | | North Path 15 | PG&E CG | | | | | Palo Verde | SoCal Gas | El Paso Permian | | | | South Path 15 | SoCal Gas | PG&E South | | | | Utah | KERN RIVER OPAL | NW WY Pool/Rky | | | | PJM/MISO Region | | | | | | Alliant West | Nrthrn Ventura | Nrthrn NG Demarc | | | | Manitoba/Saskatchewan | Emerson | | | | | Michigan | Mich Con CG | Cons Energy CG | | | | MISO Arkansas Hub | CenterPoint E | Texas Gas Zn 1 | TETCO M1 | | | MISO Illinois Hub | Chicago CG | | | | | MISO Indiana Hub | Chicago CG | | | | | MISO Louisiana Hub | Col Gulf LA | TX Eastern E LA | | | | MISO Minn Hub | Nrthrn Ventura | Emerson | | | | MISO Texas Hub | TX Eastern E TX | NGPL Texok Zn | | | | PJM AD Hub | Mich Con CG | Chicago CG | | | | PJM AECO | Col Gas Appal | Dominion S Pt | | | | PJM AEP | Dominion S Pt | Lebanon Hub-Ohio | | | | PJM APS | Col Gas Appal | Dominion S Pt | | | | PJM ATSI | Dominion S Pt | Lebanon Hub-Ohio | | | | PJM BGE Zone | TX Eastern M-3 | Transco Zn6 xNY | | | | PJM ComEd | Chicago CG | Lebanon Hub-Ohio | | | | PJM DEOK | Dominion S Pt | Lebanon Hub-Ohio | | | | PJM DPL | TX Eastern M-3 | Col Gas Appal | | | | PJM Duquesne | Dominion S Pt | Transco Zn6 xNY | | | | PJM Eastern Hub | TX Eastern M-3 | Transco Zn6 xNY | | | | PJM FE Ohio | Dominion S Pt | Lebanon Hub-Ohio | | | | PJM JCPL Zone | Transco Zn6 xNY | TX Eastern M-3 | | | | PJM METED | TX Eastern M-3 | Transco Zn6 xNY | | | | PJM NI Hub | Chicago CG | | | | | PJM PECO Zone | TX Eastern M-3 | Transco Zn6 xNY | | | | PJM PENELEC | Dominion S Pt | Transco Zn5 Dlv | | | | PJM PEPCO Zone | Transco Zn5 Dlv | TX Eastern M-3 | Dominion S Pt | | | PJM PPL Zone | LEIDY | Dominion S Pt | | | | PJM PSEG Zone | TX Eastern M-3 | Transco Zn6 xNY | | | | PJM Western Hub | TX Eastern M-3 | Dominion S Pt | | | | Southern Illinois | Chicago CG | | | | | Wisconsin | ANR ML 7 | | | | | | | | | | # **POWER/GAS HUB PAIRS** | Power Hub Name | Gas Hub 1 | Gas Hub 2 | Gas Hub 3 | Gas Hub 4 | |-------------------|-----------------|-----------------|----------------|-----------| | ERCOT Region | | | | | | ERCOT Houston Hub | Houston ShipChI | Katy | | | | ERCOT North Hub | TX Eəstern E TX | | | | | ERCOT South Hub | Tenn Zn0 | NGPL S TX | Agua Dulce Hub | | | ERCOT West Hub | Waha | Transwestn Perm | | | #### IMPORTANT DISCLOSURE What Platts subscribers do with the information provided is entirely at their own discretion, and Platts accepts no liability for the results of their use. Forward prices are provided for information purposes, and should not be construed as a solicitation or offer to buy or sell any commodity, securities or related financial instruments. #### **REVISION HISTORY** **February 2017:** Platts revamped this Methodology And Specifications Guide effective February 2017. This revision was completed to remove reference to the following discontinued products: 10 & 20 year historical volatility curves (which are being replaced by implied volatility curves),
spark spreads and correlation curves. This revision was also completed to include coverage changes to the M2MS-Power product. Specifically, 6 hubs were added to bring the total number of hubs covered to 72. **November 2015:** Platts revised this Methodology and Specifications Guide effective November 2015. This revision was completed to include coverage and definition changes to the M2MS-Power product – 5 location additions, 1 location name change, and 5 location discontinuations. This revised guide also reflects a balance of the month definition. April 2015: Platts revamped this Methodology And Specifications Guide effective March 2015. This revamp was completed to enhance the clarity and usefulness of the guide, and to introduce greater consistency of layout and structure across all published methodology guides. Methodologies for market coverage were not changed through this revamp, unless specifically noted in the methodology guide itself. The delivery of all this power enables Canada to avoid building roughly 1,300 MW of new generation to meet its demand for electricity. As a comparison, Columbia Generating Station, the Northwest's only nuclear power plant, has a capacity of about 1,150 MW. When the value of the energy, capacity and flexibility are factored together, BPA currently estimates that if Canada were to replace the entire Entitlement with its own new gas generating resource, the cost would be roughly \$250 million to \$350 million each year. This range — which reflects low and high assumptions about fuel prices for a replacement power plant — serves as a good proxy of the Entitlement's value to Canada. Certainly, the world has changed over the past 50 years. Canada's Treaty dams are in place and will be more than fully paid for by 2024. Given this reality, the U.S. Entity prefers to evaluate the Entitlement value, not in terms of whether the Treaty dams exist but on whether Canada and the United States continue to work together to coordinate hydro system operations or choose to operate independently. The U.S. Entity is studying the difference in value between coordinated and uncoordinated cross-border hydro system operations. Initial estimates indicate that the power benefit from coordinated Treaty storage operations, compared to uncoordinated operation, is \$26 million a year, a sum much smaller than those produced using either the current Canadian Entitlement calculations or the estimated cost of a replacement resource. Analyses continue to be conducted. # Considerations for Treaty Review From a power perspective, the U.S. Entity believes that by 2024 the United States will have fully compensated Canada. If the formula is updated to reflect the post-2024 value of a coordinated hydro system operation, the Canadian share of downstream power benefits will be significantly lower than Increased hydroelectric production under the Treaty has benefitted both Canada and the United States. the established 450 aMW forecast for U.S. returns. The method for calculating these benefits is explicitly fixed through 2024 and cannot be significantly changed without renegotiating the Treaty's Entitlement methodology. Through the Treaty Review process, which includes input from regional stakeholders, the U.S. Entity is evaluating what changes to propose to the Canadian Entitlement calculation. BPA also must estimate the value of power benefits associated with continuing the Treaty. Any proposed change in the calculations would have to be mutually agreeable to the United States and Canada. # For more information For information regarding the Columbia River Treaty 2014/2024 Review, please visit www.crt2014-2024review. gov or email us at treatyreview@bpa.gov, or call the Bonneville Power Administration at 800-622-4519 or the U.S. Army Corps of Engineers at 503-808-4510. This publication of the Columbia River Treaty 2014/2024 Review was developed to inform you of issues surrounding the Columbia River Treaty. It is published by the U.S. Entity, which includes the Bonneville Power Administration and the U.S. Army Corps of Engineers. April 2013 United States Entity U.S. ARMY CORPS OF ENGINEERS • BONNEVILLE POWER ADMINISTRATION # Columbia River Treaty 2014/2024 Review # **Canadian Entitlement** # What is the Canadian Entitlement and how did it come to be? Before the Columbia River Treaty, high springtime flows on the Columbia River frequently overwhelmed the ability of the United States' downstream infrastructure to generate power and manage flood risk. The four dams built under the terms of the 1964 Columbia River Treaty (three in Canada and a fourth in Montana) approximately doubled the water storage capacity on the Columbia River system. The Treaty and Treaty dams enhanced the cooperation between the U.S. and Canada, helping to ensure mutually advantageous operation of the dams by improving the ability to regulate the timing of streamflows by capturing high spring flows and releasing this water more gradually over the summer, fall and winter months. Overall, the coordinated storage and regulation of flows between the United States and Canada vastly improved both hydropower production and flood mitigation in the Columbia Basin. The increased power generation in the United States resulting from the operation of additional storage capacity created by the three Treaty dams built in Canada is referred to as the downstream power benefits. The Treaty negotiators in the early 1960s agreed that the United States and Canada would equally share these benefits, which are calculated annually according to a complex method negotiated among the Treaty's authors. It is essentially a theoretical value placed on the additional generation. Canada's half of these calculated downstream power benefits is called the Canadian Entitlement. The Canadian Entitlement is not solely a U.S. federal responsibility. Chelan County PUD, Douglas County PUD and Grant County PUD — known as the Mid-Columbia PUDs — contribute approximately 27 percent of the power delivered under the Canadian Entitlement because they own and operate five hydroelectric projects on the Columbia River that benefit from coordinated river operations under the Treaty. The U.S. Entity believes that the Canadian Entitlement, combined with a separate flood risk management payment to Canada, has more than repaid the cost to Canada of the three dams over the Treaty's expected minimum life of approximately 50 years (beginning after the last of these dams was completed in 1973). In other words, the U.S. Entity's view is the Canadian Entitlement and the flood risk management payment were designed to produce a value that reflected an appropriate total payment to Canada for the cost of Treaty dams by the time the Treaty could be terminated in 2024. While the Treaty authors did their best to forecast conditions far into Duncan Dam was the first of four new dams constructed under the Treaty. Keenleyside Dam, also known as Arrow in the U.S., started operating in 1968. Mica Dam was the final Treaty dam built in Canada. Libby Dam, the last Treaty dam to become operational is the only Treaty dam in the United States. the future, their 1960s-era calculations overestimated regional growth in the demand for electricity and did not anticipate modern constraints on the operation of the dams to protect threatened and endangered species. Also, they could not have anticipated the significant regional development of conservation and renewable energy resources and other electricity market factors, all of which influence the value of power in the region. In short, the U.S. Entity believes that over the life of the original Treaty, the U.S. will have fully compensated Canada for its investments in Treaty dams. # The Past When the Treaty was enacted, Canada did not need the power provided through the Canadian Entitlement to meet its demand for electricity. Thus, it decided to sell that power to utilities in the United States for \$254 million over the first 30 years of the Treaty's term. This transaction covered almost all of the original capital cost of the Canadian Treaty dams.¹ The United States made the last payment under the 30-year power sales contract in 2003. Now, the U.S. delivers Canadian Entitlement power directly to Canada over the Bonneville Power Administration's Northern Intertie at the Canada-U.S. border. This delivery ranges from 1,176 to 1,369 megawatts (MW) of capacity and 465 to 567 annual average megawatts (aMW) of energy. As a reference point, one average megawatt is enough energy to power 730 typical Northwest homes. Capacity refers to the ability to generate or transmit electricity; this value reflects the maximum amount of power that Canada could request over a single hour. The energy Entitlement is the average amount of electricity actually delivered to Canada over a period of one year. This power delivery is a combination of federal and non-federal power, reflecting the mix of hydropower generation resources in the Columbia River Basin. The original Treaty negotiators expected the downstream power benefits to diminish significantly over time. The final Treaty negotiations forecast the Canadian Entitlement for the 2010 to 2024 period to be about 134 aMW of energy and zero MW capacity, meaning Canada would have no flexibility regarding when the United States returned Entitlement power. Using the current calculation methodology, the 2025 forecast is 450 aMW of energy and about 1,300 MW of capacity. 2 # The Future The Canadian Entitlement currently is based on an estimation of how much hydropower could be produced with and without the additional water storage provided by the Treaty dams. There is more electricity generated when it is assumed the dams are in place (remember, this methodology uses a negotiated formula to calculate the theoretical value of the additional generation), and the Canadian Entitlement is equal to one-half of that assumed increase in generation. The structure of
the Canadian Entitlement makes it an extremely valuable commodity in the utility industry. Electricity is more valuable when it is virtually guaranteed to be available, or "reliable," and when its delivery can be shifted to times of high demand, or "flexible." The Canadian Entitlement offers both of these attributes. To highlight the flexibility of the Canadian Entitlement, the current agreement allows Canada to select which hours of the following day that it wants anywhere from zero to 1,321 MW of power to be delivered to the B.C. border. Similarly, to underscore the reliability of the Canadian Entitlement, these returns from the U.S. to Canada are virtually guaranteed, barring any significant transmission system problems or other unusual circumstances. During the operating year of 2012, the U.S. delivered Canadian Entitlement power 99.94 percent of the time. In the case of the few hours when deliveries were reduced, they were made up in a week or less. # The Columbia River Treaty 2014/2024 Review The coordinated operation of the many dams and reservoirs under the Columbia River Treaty has provided significant flood risk management and hydropower benefits for both the United States and Canada. The Treaty calls for two "entities" to implement the Treaty, one for the U.S. and one for Canada. The U.S. Entity, appointed by the president, consists of the BPA administrator and the Northwestern Division engineer of the U.S. Army Corps of Engineers. The Canadian Entity, appointed by the Canadian cabinet, is the British Columbia Hydro and Power Authority (BC Hydro). While the Treaty has no specified end date, it contains provisions that will change its implementation in 2024. Additionally, either Canada or the U.S. may unilaterally terminate most provisions of the Treaty in 2024, with a minimum of 10 years' advance notice, hence the focus on 2014 and 2024. The U.S. Entity is undertaking a series of studies regarding current and potential future operations under the Treaty. The goal is a recommendation from the U.S. Entity to the U.S. Department of State by the end of 2013 on which elements the Pacific Northwest would like the Department of State to pursue in negotiations with Canada. Collectively known as the Columbia River Treaty 2014/2024 Review, this multi-year effort will provide information critical to a U.S. Entity recommendation through evaluation of the value of Treaty benefits to the region and consideration of contemporary concerns that reach beyond flood risk management and power generation. Integral to the Treaty Review process is the U.S. Entity's direct consultation with the Sovereign Review Team, comprised of representatives of the four Northwest states, 15 tribal governments and 11 federal agencies. Supporting the Sovereign Review Team is the Sovereign Technical Team, responsible for completing the technical work that informs the Sovereign Review Team and the U.S. Entity. U.S. President Dwight D. Eisenhower and Canadian Prime Minister John Diefenbaker sign the Columbia River Treaty in 1961. 3 ¹ Hugh Keenleyside, 1974, "Ten Years Later, the Results of the Columbia River Treaty." ### ADMINISTRATOR'S DECISION RECORD # NON-TREATY STORAGE AGREEMENT WITH BC HYDRO #### 1. DECISION This document supports a decision by the Administrator of the Bonneville Power Administration (BPA) to enter into an agreement (the 2012 Non-Treaty Storage Agreement [2012 NTSA]) with the British Columbia Hydro and Power Authority (BC Hydro). The 2012 NTSA provides for additional use of existing storage space on the Columbia River in Canada for increased value to the region. The 2012 NTSA does not require any particular operation of the storage space but provides the opportunity for both BPA and BC Hydro (jointly, the Parties) to shape flows within existing downstream requirements and utilize the additional flexibility to create power and nonpower benefits for the parties and the region. This flexibility is expected to provide additional power benefits for the federal system, downstream mid-Columbia projects, and BC Hydro. The 2012 NTSA fulfills an objective called for in NOAA Fisheries 2008/2010 Biological Opinion on the Federal Columbia River Power System (FCRPS) to seek a long-term agreement on use of non-Treaty space in Canada to provide benefits to Endangered Species Act (ESA) listed fish. The 2012 NTSA allows for coordinated use of non-Treaty storage in Canada to shape flows within the year for fisheries benefits, and provides up to an additional half million acre-feet water to benefit fish in the lowest water conditions. # 2. BACKGROUND a. Non-Treaty Storage and Relationship to the Columbia River Treaty Coordination of the Pacific Northwest and BC Hydro systems began in 1964 with ratification of the Columbia River Treaty (Treaty). Under the Treaty, Canada was required to construct and operate 15.5 million acre-feet (MAF) of storage in Canada at Mica, Arrow, and Duncan projects. The United States was allowed to construct 5 MAF of storage at Libby Dam. BC Hydro designed and built Mica dam to store more water than the 7 MAF required under the Treaty. As a result, an additional 5 MAF of usable storage is available at Mica. This extra storage is referred to as non-Treaty storage and is not operated under the terms of the Treaty. The Treaty limits use of non-Treaty storage to actions that do not reduce Treaty flood control and power benefits. Within that constraint, BC Hydro has used the storage space for its benefit by redistributing water among its reservoirs. BPA access to this storage is obtained only through negotiation of operational agreements that provide mutual benefits to the BPA and BC Hydro. Absent an agreement, the benefits of releasing water from Arrow across the Canada-U.S. border cannot be achieved. Beginning in the mid-1990's, Biological Opinion objectives included seeking use of storage in Canada to improve flows for fisheries in the U.S. through use of both Treaty and non-Treaty storage. Under the Treaty, the U.S. and Canada have developed Treaty supplemental operating agreements within the operating year to provide additional flow augmentation for U.S. fisheries in exchange for trout spawning and whitefish protection downstream of Arrow in Canada. Most typically this results in storage of 1 MAF of water in Treaty space during the winter for release in the May-July period. These agreements do not provide any ability to shape Treaty flows from one operating year to the other, from July into August for example, or for additional water in a dry year. These annually negotiated agreements will only be successful to the extent that mutual benefits can be obtained for both Canada and the U.S. In order to have greater flexibility to shape flows from Canada, access to non-Treaty storage is needed. # b. Prior Agreements BPA and BC Hydro signed the first long-term non-Treaty storage agreement (NTSA) in 1984 to provide mutual energy benefits and to address a dispute over the initial filling of Revelstoke reservoir. The 1984 NTSA included access to 1 MAF of non-Treaty storage each for BPA and BC Hydro. In 1990, BPA and BC Hydro expanded the agreement to use 4.5 MAF of the storage continuously and extended the termination date from 1993 to 2003 (later extended to 2004). Companion agreements with some of the owners, operators, and power purchasers from five non-federal generating projects on the Columbia River were also developed under both prior long-term agreements. Non-Treaty storage provides additional storage needed to shape flows from Canada both within the year and between years, consistent with the Treaty. Because non-Treaty storage may not be operated to reduce power and flood control benefits, BPA and BC Hydro seek opportunities to provide power as well as non-power benefits under non-Treaty storage agreements. During the term of the 1990 NTSA, that long-term agreement provided terms under which arrangements to shape flows through the spring and summer periods could be developed. Following expiration of release provisions under the 1990 NTSA in 2004, short-term stand-alone agreements were negotiated, when possible. Such agreements were developed each year from 2006 through 2011 with the amount and shape of water stored and released coordinated in-season with fisheries managers. All of the seasonal agreements involved storing water in the spring period when flows were higher and releasing water later in the summer when flows were lower. The amount of water stored and released depended on the water conditions including the seasonal flow volume and shape. This operation was considered beneficial for fish and also provided power benefits due to the higher summer electricity prices compared to those in the spring. In 2010, as refill of accounts under the 1990 NTSA neared completion, BPA and BC Hydro agreed to seek a new long-term NTSA that would provide flexibility to both Parties. Such an agreement could provide greater power and non-power benefits, including fisheries benefits, than could be achieved through continued use of annual seasonal agreements. # c. Mid-Columbia Participants The 2012 NTSA is not expected to result in companion agreements with any of the mid-Columbia participants. Actions under the 2012 NTSA with respect to downstream parties are addressed under the 1997 Pacific Northwest Coordination Agreement. # d. Negotiation of 2012 NTSA BPA held several meetings with federal agencies, states, and tribes to solicit input for negotiating a new long-term NTSA and to report on progress during the negotiations with BC Hydro. The feedback BPA received during these meetings was considered by BPA in discussions with BC Hydro. During these discussions, BPA and BC Hydro developed non-binding terms for negotiating an NTSA. These terms were captured in a term sheet that was released for public review in the U.S. and Canada. BPA held a series of open house meetings in the region to provide information and answer
questions related to the 2012 NTSA terms. BPA held public meetings in Spokane, Boise, Portland, and Seattle. In addition, BPA conducted two conference calls with customers, met with tribes and other interested groups, and published information in the BPA Journal. Written information, including a Fact Sheet and Key Messages also were provided to designated BPA staff to assist them in informing public interest groups, power utility groups and customers, state and local officials and Northwest delegation members about the NTSA Term Sheet and draft contract language. BPA accepted public comments on the draft contract for a 10-day period in March 2012; there were no comments submitted that opposed the contract language. During outreach efforts, most questions related to one of two general topics; 1) how the 2012 NTSA would create power benefits for the region and for BC Hydro, and 2) how the provisions related to fisheries benefits would work, specifically the BPA dry water provisions. During meetings and calls, questions were answered and additional information was provided, when requested. Staff from the Shoshone Paiute Tribes of the Duck Valley Indian Reservation raised concerns regarding the level of environmental analysis that would be conducted for the 2012 NTSA under the National Environmental Policy Act (NEPA). BPA environmental staff, NEPA Compliance Officer, and BPA's lead negotiator met with the Shoshone Paiute Tribes and other interested Upper Snake River Tribes to follow up on concerns raised and answer additional questions regarding the 2012 NTSA. BPA has conducted environmental review of the 2012 NTSA in accordance with the U.S. Department of Energy NEPA implementing regulations (please see Section 5. NEPA Analysis of this decision record). BPA and BC Hydro drafted the 2012 NTSA consistent with the Term Sheet made public in May 2011. The 2012 NTSA Final draft contract was made available for public review and comment on March 7, 2012. ## 3. PUBLIC REVIEW AND COMMENT BPA provided 10 days to allow public review and comment on the draft 2012 NTSA, which closed March 16, 2012. BPA received one comment from the Springfield Utility Board (SUB). SUB expressed concern over whether the 2012 NTSA could potentially and unintentionally impact and/or interfere with BPA's Environmental Redispatch and Oversupply efforts. SUB believes any lost revenues associated with the 2012 NTSA should be redistributed among BPA customers. BPA appreciates SUB's concern; however SUB's concern is misplaced. Rather than adversely impacting BPA's efforts to address Environmental Redispatch and Oversupply, the 2012 NTSA is expected to provide additional flexibility that can help manage and potentially improve conditions with respect to Environmental Redispatch and Oversupply. The 2012 NTSA will provide additional flexibility to reduce flows and spill during periods when dissolved gas levels caused by spill exceed state standards. This flexibility will be used to help manage oversupply problems. Overall, the 2012 NTSA is expected to produce power benefits on the federal system, providing an economic benefit to BPA's customers and, in accordance with the Treaty, must be operated so that the power and flood control benefits of Treaty operating plans are not reduced. # 4. SUMMARY OF AGREEMENT The 2012 NTSA (contract 12PG-10002) will replace both the 1990 long-term NTSA (contract DE-MS79-90BP92754), which fully expired in January 2011, and the September 2011 non-Treaty storage "Bridge" agreement (contract 11PB-21385) which expires March 30, 2012. The NTS "Bridge" agreement was designed to transition to the 2012 NTSA upon execution. The 2012 NTSA expires on Sept. 15, 2024, unless either party terminates under the early termination provisions. Like previous non-Treaty storage agreements, and consistent with the requirement of the Treaty regarding non-Treaty storage use, operations under the 2012 NTSA will be conducted in a manner that does not reduce flood control and power benefits under the Columbia River Treaty. Absent an agreement such as this 2012 NTSA, BPA does not have access to non-Treaty storage. The 2012 NTSA will provide opportunities to achieve benefits for ESA-listed fish by providing flexibility for BPA to store water when it is abundant and exceeds fish requirements in the spring and then release that water in the summer to provide water when Columbia River flows are low. This operation benefits fish by providing needed summer flows and also provides power benefits by increasing hydro generation when it is needed to meet summer loads. In the driest water conditions, the proposed terms will allow BPA to release water in the spring to provide additional water for fish. The 2012 NTSA will also provide additional flexibility to reduce flows and spill during periods when dissolved gas levels (caused by spill) exceed state standards and to reduce or increase flows to move generation into higher value periods. Under terms of the 2012 NTSA: - BPA and BC Hydro each have continuing access to 1.5 MAF of active storage. - BC Hydro may make available from time to time recallable accounts of 1 MAF each for BPA and BC Hydro. - With the exception of limited firm release rights by both BPA and BC Hydro during dry water conditions, all water transactions are by mutual agreement and are coordinated on a weekly basis. - BPA has firm release rights of up to 0.5 MAF of water releases in spring of years within the lowest 20 percent of water conditions if not used in the prior year. - BC Hydro benefits from the energy value of generation changes at downstream U.S. federal hydro projects that result from its water transactions - BC Hydro's benefits are either delivered as energy at the B.C./U.S. border or are financially settled with the exception of BC Hydro's firm energy benefits, which are always delivered to the border with all transmission costs paid by BC Hydro. BPA compensates BC Hydro for headlosses on the BC Hydro system resulting from BPA's non-Treaty storage use. As with the current non-Treaty storage "Bridge" agreement, no energy value is associated with BPA water transactions under the 2012 NTSA. BC Hydro water transactions are converted to energy values using the federal downstream projects' daily conversion factor and an agreed daily flat mid-C index price, limited to minimum on-peak (HLH) and off-peak (LLH) prices of \$0.00. If BPA's policy changes such that BPA participates in negative markets, this minimum price provision will be re-visited. The energy values are tracked and cumulated over time as an energy benefit. The benefit may be delivered as energy upon request by the party owed by coordinating energy deliveries on a weekly basis, up to 300 MW, uniformly on light load hours. Unless otherwise agreed, any remaining energy benefit will be settled financially in September each year. # 5. NEPA ANALYSIS # a. NEPA Evaluation BPA has reviewed the 2012 NTSA for potential environmental effects that could result from its implementation, consistent with NEPA, 42 U.S.C. § 4321, et seq. Based on this review, BPA has determined that the 2012 NTSA falls within a class of actions that normally do not require environmental assessments or environmental impact statements and are excluded from further NEPA review pursuant to U.S. Department of Energy NEPA implementing procedures, which are applicable to BPA. More specifically, the 2012 NTSA falls within Categorical Exclusions B4.4 and B4.5, found at 10 CFR 1021, Subpart D, Appendix B. The B4.4 categorical exclusion involves actions of "[p]ower marketing services and power management activities (including, but not limited to, storage, load shaping and balancing, seasonal exchanges, and other similar activities), provided that the operations of generating projects would remain within normal operating limits." The B4.5 categorical exclusion involves actions of "[t]emporary adjustments to river operations to accommodate day-to-day river fluctuations, power demand changes, fish and wildlife conservation program requirements, and other external events, provided that the adjustments would occur within the existing operating constraints of the particular hydrosystem operation." The environmental clearance memorandum that documents the categorical exclusion analysis and determination for the 2012 NTSA will be posted to BPA's website at: http://efw.bpa.gov/environmental_services/categoricalexclusions.aspx # 6. ALTERNATIVES CONSIDERED # a. Status Quo Under the Status Quo, BPA would seek to negotiate seasonal agreements with BC Hydro for non-Treaty storage use for fisheries and other benefits. Specific agreement terms would be negotiated in season by mutual agreement. Typically these agreements have been for spring storage and summer release. # b. Implement the Proposed 2012 NTSA The 2012 NTSA provides for long-term coordination and use of non-Treaty storage. BPA and BC Hydro would coordinate use of 1.5 MAF each of active storage on an ongoing basis under terms of the 2012 NTSA. BPA would gain firm rights to 0.5 Maf of water in the driest 20th percentile of water conditions, as described in NOAA's 2008/2010 Biological Opinion on the FCRPS, provided a dry year release has not occurred in the previous year and there is water in BPA's Active account. The 2012 NTSA also provides additional operational flexibility for power and non-power purposes including shaping flows from spring to summer to benefit U.S. fish. Accounting mechanisms are very similar to those used in recent short-term non-Treaty storage agreements with BC Hydro, however there are additional provisions for energy deliveries during the year and an option for financial settlement of obligations at the end of the year. The terms of the 2012 NTSA are consistent with the objectives under which BPA was to seek a long-term NTSA described in the NOAA Fisheries 2008/2010 Biological Opinion on the FCRPS. # c. No Action Under the No-Action Alternative, there
would be no negotiation of either short- or long-term non-Treaty storage agreements in the future. # 7. DECISION FACTORS #### a. Economic Factors The greatest economic benefits to be gained under the 2012 NTSA result from operation of BPA's 1.5 MAF Active Account. The NTSA will provide flexibility to shape flows to better meet operational and marketing objectives. It is expected that operation of non-Treaty storage would result in federal power benefits of about \$8 million per year, with additional benefits for downstream mid-C project owners and participants and BC Hydro. BC Hydro also achieves power benefits within its own system by increasing the flexibility and space to re-balance reservoir operations within Canada. Energy deliveries under the NTSA are generally limited to 300 MW in light load hours and are designed to minimize transmission costs. It is expected that energy deliveries to BC Hydro will be made on transmission that is purchased for delivery of the Canadian Entitlement under the Treaty, but which is unused during most light load hours. Under the 2012 NTSA, all deliveries may be made on non-firm transmission and will not require additional firm transmission purchases. # b. Operational Factors The 2012 NTSA will provide additional operating flexibility on BPA's system that would otherwise terminate with the NTS "Bridge" Agreement on 30 March 2012. Absent a new NTSA, weekly flows from Canada are established under the Treaty with limited flexibility to mutually agree to alternative and mutually-beneficial operations. The NTSA will allow additional shaping of flows into the U.S. for both power and non-power purposes beyond that afforded under the Treaty, including shaping within the operating year and between operating years. # c. Environmental Factors # 1. Biological Opinion The 2012 NTSA fulfills an objective called for in the NOAA Fisheries 2008/2010 Biological Opinion on the FCRPS to seek a long-term non-Treaty storage agreement on the use of non-Treaty space in Canada to provide benefits to ESA-listed fish (Reasonable and Prudent Alternative (RPA)) Action 12. The 2012 NTSA provides the opportunity to shape flows within the year for fish benefit and provides up to an additional 0.5 MAF of water in the spring to benefit fish in lowest 20th percentile of water conditions, if not used in the prior year. This is consistent with the objective included in RPA Action 14, Dry Water Year Operations to explore opportunities to shape non-Treaty storage water to benefit ESA-listed fish in dry years. In addition, RPA Action 13 required BPA to coordinate with other Federal Agencies, States and the region's Tribes prior to any negotiations with BC Hydro to obtain ideas and information on possible points of negotiation and to report on major developments during negotiations. As described above in Section 2, BPA has met the coordination and inform requirements. ## 2. Additional Environmental Benefits In addition to providing flow benefits for fisheries during low and average water conditions, the NTSA may help reduce dissolved gas levels during high water conditions. One of the advantages of a long-term agreement is the ability to shape water from high flow years and periods, into lower flow periods and into low and average flow years. This can help reduce dissolved gas levels in very high flow conditions. Because the NTSA does not require a specific operation, the flexibility it provides can be used to meet other non-power objectives that may occur in the future. # d. Statutory Authority BPA has broad statutory authority to enter into agreements for greater operational flexibility. Pursuant to this authority, the BPA Administrator has discretion to enter into 'such contracts, agreements, and arrangements . . . upon such terms and conditions and in such manner as he may deem necessary' to fulfill BPA's statutory purposes. BPA has exercised this authority by entering into numerous operational agreements, including predecessor long-term and short-term agreements to the 2012 NTSA. # Equitable Treatment BPA has a responsibility to protect, mitigate, and enhance fish and wildlife "in a manner that provides equitable treatment for such fish and wildlife with the other purposes for which such system and facilities are managed and operated." BPA meets this responsibility on a system-wide basis, and not necessarily in every distinct transaction.⁴ In coordination with the Army Corps of Engineers and Bureau of Reclamation, BPA provides equitable treatment on a system-wide basis through its protection, mitigation and enhancement of fish and wildlife consistent with both the Northwest Power Council's Fish and Wildlife Program and meeting responsibilities under the Endangered Species Act to avoid jeopardizing listed species and adversely modifying or destroying designated critical habitat, and enabling their recovery. The 2012 NTSA will further equitable treatment in several ways. For all types of water years it provides operating flexibility on BPA's system to allow for shaping for non-power objectives, including fisheries benefits, within the operating year and between operating years. The 2012 NTSA also provides up to an additional 0.5 MAF of firm rights to water in the spring of dry water years, if not used in the prior year, to augment fish flows. In addition to providing flow benefits for fisheries, the 2012 NTSA may help reduce dissolved gas levels during high water conditions. One of the advantages of a long-term agreement is the ability to shape water from high flow years and periods, into lower flow periods and into low and average flow years. This can help reduce dissolved has levels in very high flow conditions. #### 8. CONCLUSION The 2012 NTSA has economic benefits to the Pacific Northwest, BPA, and BC Hydro. The 2012 NTSA has operational and environmental benefits as described in Section 7. It will provide 0.5 MAF of water in the spring in the driest 20th percentile of water conditions (if not _ ¹ See generally: The Bonneville Project Act, 16 USC 832; The Federal Columbia River Transmission System Act, 16 USC § 838; The Regional Preference Act 16 USC §837; and The Pacific Northwest Electric Power Planning and Conservation Act 16 USC §839 ² 16 USC 832a(f) ³ 16 USC 839b(h)(11)(A) ⁴ Northwest Environmental Defense Center v BPA, 117 F.3d 1520 (9th Cir. 1997). used in the previous year), a benefit that is not available under short-term seasonal agreements. It will provide additional flexibility and certainty for shaping flows through the spring and summer period and it will provide additional flexibility for shaping flows outside the April-August period and from year to year. All projects will continue to operate within their normal operating limits and, except for very modest and limited release rights in dry water conditions, either BPA or BC Hydro may limit transactions to protect non-power needs. For the reasons stated above, BPA has decided to proceed with the Non-Treaty Storage Agreement, BPA Contract No. 12PG-10002 with BC Hydro. Issued in Portland, Oregon. Bonneville Power Administration Administrator and Chief Executive Officer March 23, 2012 Date